Math, asked by roysweta10012004, 10 months ago

15. The hypotenuse of a rectangle is 5 cm and its length is 4 cm, find the area of
the rectangle​

Answers

Answered by Vamprixussa
26

QUESTION

The diagonal of a rectangle is 5 cm and its length is 4 cm, find the area of  the rectangle​.

                                                 

According to the Pythagorean theorem,

\boxed{(Hypotenuse)^{2} = Side^{2} +side^{2} }

∵Since each angle of a Δ is 90°

Given

Length of the rectangle =  4 cm

Substituting , we get,

5^{2}  = 4^{2}  + Breadth^{2} \\25 = 16 + Breadth^{2} \\Breadth^{2}  = 25-16 = 9\\=> Breadth = 3 \ cm

Area of the rectangle = Length * breadth

                                     = 3 * 4

                                    = 12 cm²

\boxed{\boxed{\bold{Therefore, \ Area \ Of \ The \ Rectangle \ Is \ 12 \ cm^{2}} }}

                                                         

Answered by EliteSoul
135

\large{\underline{\boxed{\mathfrak\blue{Area \: of \: rectangle = 12 \: cm^2 }}}}

*Reference of diagram given below:-

\setlength{\unitlength}{0.78 cm}\begin{picture}(12,4)\thicklines\put(5.6,9.1){$A$}\put(5.5,5.8){$B$}\put(11.1,5.8){$C$}\put(11.05,9.1){$D$}\put(4.5,7.5){$3\:cm$}\put(8.1,5.3){$4 \:cm$}\put(11.5,7.5){$3 \:cm$}\put(8.1,9.5){$4\:cm$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(6,6){\line(5,3){5}}\end{picture}

Given:-

  • Hypotenuse of rectangle = 5 cm
  • Length = 4cm

To find:-

  • Area of rectangle = ?

According to Pythagoras theorem:-

(Hypotenuse)² = Length² + Breadth²

⇢ 5² = 4² + Breadth²

⇢ 25 = 16 + Breadth²

⇢ Breadth² = 25 - 16

⇢ Breadth² = 9

⇢ Breadth = √9

⇢ Breadth = 3 cm

\rule{100}2

We know that,

\star\:{\boxed{\mathfrak\red{Area\:of \: rectangle = Length \times Breadth}}}

⇢ Area of rectangle = (4 × 3) cm²

⇢ Area of rectangle = 12 cm²

\therefore{\underline{\rm{Area \: of \: rectangle = 12 \: cm^2}}}

Similar questions