15x + 22y = 5
40x + 55y = 13
Solve for X and Y
( Substitution method)
Answers
Answered by
6
Given Equation is 15x + 22y = 5 ---- (1)
Given Equation is 40x + 55y = 13 ---- (2)
Equation (1) can be written as,
= > 15x + 22y = 5
= > 15x = 5 - 22y
= > x = (5 - 22y)/15 ------- (3)
On substituting (3) in (2), we get
= > 40x + 55y = 13
= > 40(5 - 22y/15) + 55y = 13
= > 40(5 - 22y) + 825y = 195
= > 200 - 880y + 825y = 195
= > 200 - 55y = 195
= > -5 = -55y
= > y = 1/11.
Substitute y = 1/11 in (3), we get
= > x = (5 - 22y/15)
= > x = [5 - 22(1/11)]/15
= > x = (5 - 2)/15
= > x = 3/15
= >x = 1/5
Therefore, the value of x = 1/5 and y = 1/11.
Hope this helps!
Anonymous:
Thanks bro
Answered by
7
15x + 22y = 5 --------( 1 )
40x + 55y = 13--------( 2 )
From eq'n ( 1 ) , we get
15x + 22y = 5
=> 22y = 5 - 15x
=> y = ( 5 - 15x / 22 ) ------- ( 3 )
Substitute eq'n ( 3 ) in eq'n ( 2 )
40x + 55y = 13
=> 40x + 55( 5 - 15x / 22 ) = 13
=> 40x + ( 275 - 825x / 22 ) = 13
=> 880x + 275 - 825x = 286
=> 55x = 286 - 275
=> 55x = 11
=> x = 11 / 55
=> x = 1 / 5 >>> Ans
From eq'n ( 3 )
y = ( 5 - 15x / 22 )
=> y = ( 5 - 15( 1 / 5) / 22)
=> y = 5 - 3 / 22
=> y = 2 / 22
=> y = 1 / 11 >>> Ans
Hence the value of x = 1 / 5 and y = 1 / 11
___________________
15x + 22y = 5 --------( 1 )
40x + 55y = 13--------( 2 )
Eq'n ( 1 )
LHS = 15 ( 1 / 5 ) + 22 ( 1 / 11 )
=> 3 + 2 = 5
= RHS
Eq'n ( 2 )
LHS = 40( 1 / 5 ) + 55 ( 1 / 11 )
=> 8 + 5 = 13
= RHS
Similar questions