Math, asked by triveninarayanpriy18, 1 year ago

16(a-b)(a-b)-9(a+b)(a+b)
factorization solve​

Answers

Answered by Anonymous
0

Answer:

heya mate❤️

Let's simplify step-by-step.

16(a−b)(a−b)−9(a+b)(a+b)

Distribute:

=(16(a−b))(a)+(16(a−b))(−b)+−9a2+−18ab+−9b2

=16a2+−16ab+−16ab+16b2+−9a2+−18ab+−9b2

Combine Like Terms:

=16a2+−16ab+−16ab+16b2+−9a2+−18ab+−9b2

=(16a2+−9a2)+(−16ab+−16ab+−18ab)+(16b2+−9b2)

=7a2+−50ab+7b2

Answer:

=7a2−50ab+7b2

Answered by avinishkashyap15
1

here , 16(a-b)(a-b) - 9(a+b)(a+b)

= 16(a-b)² - 9(a+b)²

= [4(a-b)]² - [3(a+b)]²

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

= [4(a-b) - 3 (a+b)] [4(a-b) + 3 (a+b) ]

-----eq. 1

now , 4 (a-b) - 3 (a+b )

= 4a-4b -3a - 4b

= a - 7b

similarly ,

4(a-b) + 3(a+b)

= 4a- 4b + 3a + 3b

= 7a- b

putting value in eq. 1

=[4(a-b) - 3 (a+b)] [4(a-b) + 3 (a+b) ]

= (a - 7b)(7a- b)

Follow me and Mark me as brainliest

Similar questions