16(a-b)(a-b)-9(a+b)(a+b)
factorization solve
Answers
Answered by
0
Answer:
heya mate❤️
Let's simplify step-by-step.
16(a−b)(a−b)−9(a+b)(a+b)
Distribute:
=(16(a−b))(a)+(16(a−b))(−b)+−9a2+−18ab+−9b2
=16a2+−16ab+−16ab+16b2+−9a2+−18ab+−9b2
Combine Like Terms:
=16a2+−16ab+−16ab+16b2+−9a2+−18ab+−9b2
=(16a2+−9a2)+(−16ab+−16ab+−18ab)+(16b2+−9b2)
=7a2+−50ab+7b2
Answer:
=7a2−50ab+7b2
Answered by
1
here , 16(a-b)(a-b) - 9(a+b)(a+b)
= 16(a-b)² - 9(a+b)²
= [4(a-b)]² - [3(a+b)]²
= [4(a-b) - 3 (a+b)] [4(a-b) + 3 (a+b) ]
-----eq. 1
now , 4 (a-b) - 3 (a+b )
= 4a-4b -3a - 4b
= a - 7b
similarly ,
4(a-b) + 3(a+b)
= 4a- 4b + 3a + 3b
= 7a- b
putting value in eq. 1
=[4(a-b) - 3 (a+b)] [4(a-b) + 3 (a+b) ]
= (a - 7b)(7a- b)
Follow me and Mark me as brainliest
Similar questions