Math, asked by atulmaurya733, 4 days ago

16. If the points (h, k), (x1, y1) and (x2, y2) are collinear, show that: (h-xi) (y2 - yı) = (k - yı) (x2 – x1) .​

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given that, the points

\rm \: (h,k), \: (x_1,y_1), \: (x_2,y_2) \:  \: are \: collinear. \\

Let assume that

\rm \:(h,k), \:  (x_1,y_1), \: (x_2,y_2) \: be \: represented \: as \: A,B,C. \\

We know,

Three points A, B, C are collinear iff Slope of AB = Slope of BC.

And

Slope of line joining the points (a, b) and (c, d) is given by

\boxed{\rm{  \:Slope \: of \: line \:  =  \:  \frac{d - b}{c - a} \:  \: }} \\

So, we have

\rm \: Slope \: of \: AB \:  =  \: Slope \: of \: BC \\

\rm \: \dfrac{x_1 - h}{y_1 - k}  = \dfrac{x_2 - x_1}{y_2 - y_1}  \\

can be further rewritten as

\rm \: \dfrac{ - (h - x_1)}{ - (k - y_1)}  = \dfrac{x_2 - x_1}{y_2 - y_1}  \\

\rm \: \dfrac{h - x_1}{k - y_1}  = \dfrac{x_2 - x_1}{y_2 - y_1}  \\

\rm \: (h - x_1)(y_2 - y_1) = (k - y_1)(x_2 - x_1) \\

Hence,

\rm\implies\boxed{\rm{\rm \: (h - x_1)(y_2 - y_1) = (k - y_1)(x_2 - x_1) \: }} \\

\rule{190pt}{2pt}

Additional Information :-

1. Slope of a line is defined as tangent of an angle which a line makes with the positive direction of x axis and is denoted by symbol m.

2. Two lines having slope m and M are parallel, iff M = m

3. Two lines having slope m and M are perpendicular, iff Mm = - 1

4. Slope of a line is 0, if its parallel to x axis or itself x axis.

5. Slope of a line is not defined, if its parallel to y axis or it self y axis.

Answered by StarFighter
20

Answer:

Given :-

  • The points A(h , k), B(x₁ , y₁) and C(x₂ , y₂) are collinear.

Show That :-

  • (h - x₁) (y₂ - y₁) = (k - y₁) (x₂ - x₁).

Solution :-

Given :

\mapsto \bf A\: , B\: and\: C\: are\: collinear\\

So,

\longrightarrow \sf\bold{\pink{Slope\: of\: AB =\: Slope\: of\: BC}}\\

As we know that :

\clubsuit Slope Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{m =\: \dfrac{y_2 - y_1}{x_2 - x_1}}}}\: \: \: \bigstar\\

In case of Slope of AB :-

Given Points :

\mapsto \sf A =\: (h, k)

\mapsto \sf B =\: (x_1 , y_1)

where,

  • x₁ = h
  • x₂ = x
  • y₁ = k
  • y₂ = y

By putting those values we get,

\implies \bf m =\: \dfrac{y_2 - y_1}{x_2 - x_1}

\implies \sf\bold{\purple{m =\: \dfrac{y_1 - k}{x_1 - h}}}\\

\\

In case of Slope of BC :-

Given Points :

\mapsto \sf B =\: (x_1 , y_1)

\mapsto \sf C =\: (x_2 , y_2)

where,

  • x₁ = x
  • x₂ = x
  • y₁ = y
  • y₂ = y

By putting those values we get,

\implies \bf m =\: \dfrac{y_2 - y_1}{x_2 - x_1}

\implies \sf\bold{\purple{m =\: \dfrac{y_2 - y_1}{x_2 - x_1}}}\\

\\

Now,

\implies \bf Slope\: of\: AB =\: Slope\: of\: BC\\

\implies \sf \dfrac{y_1 - k}{x_1 - h} =\: \dfrac{y_2 - y_1}{x_2 - x_1}

We can write as,

\implies \sf \dfrac{\cancel{-}(k - y_1)}{\cancel{-}(h - x_1)} =\: \dfrac{y_2 - y_1}{x_2 - x_1}

\implies \sf \dfrac{k - y_1}{h - x_1} =\: \dfrac{y_2 - y_1}{x_2 - x_1}

By doing cross multiplication we get,

\implies \sf (h - x_1)(y_2 - y_1) =\: (k - y_1)(x_2 - x_1)\\

\implies \sf\bold{\red{(h - x_1)(y_2 - y_1) =\: (k - y_1)(x_2 - x_1)}}\\

\dashrightarrow \sf\bold{\underline{\blue{HENCE\:  PROVED}}}\\

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions