Math, asked by 98sandhya, 5 months ago

16cos2π/15*cos4π/15*cos8π/15*cos16π/15=1

Answers

Answered by renuthakur3333
7

Answer:

 = 16 \cos( \frac{2\pi}{15} )  \cos( \frac{4\pi}{15} )  \cos( \frac{8\pi}{15} )  \ \cos( \frac{16\pi}{15} )  \\  \\  = 16  \cos( \frac{2\pi}{15} )  \cos( \frac{4\pi}{15} )  \cos( \frac{8\pi}{15} )  \cos(\pi +  \frac{\pi}{15} ) \\  \\  = 16 \cos( \frac{4\pi}{15} )  \cos( \frac{4\pi}{15} )  \cos( \frac{8\pi}{15} )  \cos( \frac{\pi}{15} )  \\  \\  = \frac{ - 8}{ \sin( \frac{ x}{15} ) }  \times  2\sin( \frac{\pi}{15} )  \cos( \frac{2\pi}{15} )  \cos( \frac{4\pi}{15} )  \cos( \frac{8\pi}{15} )  \cos( \frac{\pi}{15} )  \\  \\  =  \frac{ - 4}{ \sin( \frac{x}{15} ) }  \times 2 \sin( \frac{2\pi}{15} )  \cos( \frac{2\pi}{15} )  \cos( \frac{2\pi}{15} )  \cos( \frac{4\pi}{15} ) \cos( \frac{8\pi}{15} )   \\  \\  =   \frac{ - 2}{ \sin( \frac{x}{15} ) }  \times 2 \sin( \frac{4\pi}{15} )  \cos( \frac{4\pi}{15} ) \cos( \frac{8\pi}{15} )   \\  \\  =  \frac{ - 2}{ \sin( \frac{x}{15} ) } 2 \sin( \frac{4\pi}{15} )  \cos( \frac{4\pi}{15} ) \cos( \frac{8\pi}{15} )  \\  \\  =  \frac{ - 1}{ \sin( \frac{x}{15} ) }  \times 2 \sin( \frac{8\pi}{15} )  \cos( \frac{8\pi}{15} )  \\  \\  =  \frac{ - 1}{ \sin( \frac{x}{15)}  } \times  \sin( \frac{16\pi}{15} ) \\  \\  =  \frac{ -  \sin(\pi +  \frac{\pi}{15} ) }{ \sin( \frac{\pi}{15} ) }  \\  \\  =  \sin \frac{ \frac{\pi}{15} }{ \frac{\pi}{15} }  = 1

Similar questions
Math, 11 months ago