Math, asked by manjulapalamaku3566, 7 days ago

(16x square-24x +9), (4x-3)hole square

Answers

Answered by velpulaaneesh123
3

Answer:

(16x square-24x +9)

Step-by-step explanation:

Step-1 : Multiply the coefficient of the first term by the constant   16 • 9 = 144  

Step-2 : Find two factors of  144  whose sum equals the coefficient of the middle term, which is   -24 .

    -144    +    -1    =    -145  

    -72    +    -2    =    -74  

    -48    +    -3    =    -51  

    -36    +    -4    =    -40  

    -24    +    -6    =    -30  

    -18    +    -8    =    -26  

    -16    +    -9    =    -25  

    -12    +    -12    =    -24    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -12  and  -12  

                   16x2 - 12x - 12x - 9

Step-4 : Add up the first 2 terms, pulling out like factors :

                  4x • (4x-3)

            Add up the last 2 terms, pulling out common factors :

                  3 • (4x-3)

Step-5 : Add up the four terms of step 4 :

                  (4x-3)  •  (4x-3)

           Which is the desired factorization

Multiplying Exponential Expressions:

2.2    Multiply  (4x-3)  by  (4x-3)  

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (4x-3)  and the exponents are :

        1 , as  (4x-3)  is the same number as  (4x-3)1  

and   1 , as  (4x-3)  is the same number as  (4x-3)1  

The product is therefore,  (4x-3)(1+1) = (4x-3)2  

HOPE IT HELPED YOU

Similar questions