Math, asked by ravins2046, 10 months ago

17 - 21
36)Two pipes together can fill a tank in 6 hours 20 minutes. One tap takes
3hours more than the other to fill the tank separately, find the time in which
each tap can separately fill the tank.​

Answers

Answered by Anonymous
20

Given :

  • Two pipes together can fill a tank in 6 hours *40 minutes.*[Time taken is 6 hrs 40 mins instead of 6 hrs 20 mins]
  • One tap takes 3 hours more than the other to fill the tank separately.

To Find :

  • Time taken by pipe A and pipe B to fill the tank separately.

Solution :

Let the time taken by pipe A to fill the tank be x hours.

Case 1 :

It is given that pipe B takes 3 hrs more to fill the tank as compared to pipe A.

•°• Time taken by pipe B to fill the tank separately = (x + 3) hrs.

Case 2 :

The tank can be filled using both pipes together in *6 hrs 40 mins.*

The part of tank which will be filled by both pipes in 1 min,

\longrightarrow \sf{\dfrac{1}{6\:\:+\:\dfrac{40}{60}}}

\longrightarrow \sf{\dfrac{1}{\dfrac{360+40}{60}}}

\longrightarrow \sf{\dfrac{1}{\dfrac{400}{60}}}

\longrightarrow \sf{\dfrac{1}{\dfrac{20}{3}}}

\longrightarrow \sf{1\:\times\:\dfrac{3}{20}}

\longrightarrow \sf{\dfrac{3}{20}}

° Pipes A and B together in 1 min will fill 3/20 th part of the tank.

Pipe A can fill \sf{\dfrac{1}{x}} part of tank in 1 min.

Pipe B can fill \sf{\dfrac{1}{x+3}} part of tank in 1 min.

Pipe A + Pipe B :

\longrightarrow \sf{\dfrac{1}{x}\:+\:\dfrac{1}{x+3}} = \sf{\dfrac{3}{20}}

\longrightarrow \sf{\dfrac{x+x+3}{x(x+3)}\:=\:\dfrac{3}{20}}

\longrightarrow \sf{\dfrac{2x+3}{x^2+3x}\:=\:\dfrac{3}{20}}

\longrightarrow \sf{20(2x+3)=3(x^2+3x)}

\longrightarrow \sf{40x+60=3x^2+9x}

\longrightarrow \sf{3x^2+9x=40x+60}

\longrightarrow \sf{3x^2+9x-40x-60=0}

\longrightarrow \sf{3x^2-31x-60=0}

\longrightarrow \sf{3x^2\:-\:36x+5x-60=0}

\longrightarrow \sf{3x(x-12)\:+5(x-12)=0}

\longrightarrow \sf{(x-12) \:\:or\:\:(3x+5)=0}

\longrightarrow \sf{x-12=0\:\:or\:\:3x=-5}

\longrightarrow \sf{x=12\:\:or\:\:x=\dfrac{-5}{3}}

Time taken by pipe to fill the tank cannot be negative.

° x = -5/3 is neglected.

\large{\boxed{\bold{Time\:Taken\:By\:Pipe\:A\:=\:x\:=\:12\:hrs}}}

\large{\boxed{\bold{Time\:Taken\:By\:Pipe\:B\:=\:x+3\:=\:12+3\:=\:15\:\:hrs}}}

Similar questions