Physics, asked by anishkprateek, 10 months ago

17. A bicycle moves with a constant velocity of 5 km/h
for 10 minutes and then decelerates at the rate
1 km/h?, till it stops. Find the total distance covered
by the bicycle.

Answers

Answered by Rohit18Bhadauria
31

Given:

A bicycle moves with a constant velocity of 5 km/h  for 10 minutes and then decelerates at the rate  1 km/h till it stops.

To Find:

The total distance covered  by the bicycle

Solution:

We know that,

  • \orange{\underline{\boxed{\bf{Distance=Speed\times Time}}}}
  • Deacceleration is equal to acceleration in magnitude but have opposite sign with respect to acceleration
  • According to third equation of motion for constant acceleration,

\pink{\underline{\boxed{\bf{v^{2}-u^{2}=2as}}}}

where,

v is final velocity

u is initial velocity

a is acceleration

s is displacement

\rule{190}{1}

We have two consider two cases:

Case-1: When bicycle is moving with constant speed

Here,

Speed of bicycle, s= 5 km/h

Time taken by bicycle,t= 10 min= 10/60h= 1/6 h

Let the distance covered by bicycle be d₁

So,

\longrightarrow\rm{d_{1}=s\times t}

\longrightarrow\rm{d_{1}=5\times\dfrac{1}{6}}

\longrightarrow\rm{d_{1}=\dfrac{5}{6}\ km}

\rule{190}{1}

Case-2: When bicycle is deaccelerating

Here,

Initial velocity of bicycle,u= 5 km/h

Final velocity of bicycle,v= 0 km/h

(Since, it stops finally)

Deacceleration of bicycle= 1 km/h

So,

Acceleration of bicycle,a= -1 km/h

Now, let the distance covered by bicycle be d₂

So, on applying third equation of motion on bicycle, we get

\longrightarrow\rm{v^{2}-u^{2}=2as}

\longrightarrow\rm{(0)^{2}-(5)^{2}=2(-1)d_{2}}

\longrightarrow\rm{-25=-2d_{2}}

\longrightarrow\rm{-2d_{2}=-25}

\longrightarrow\rm{d_{2}=\dfrac{-25}{-2}}

\longrightarrow\rm{d_{2}=\dfrac{25}{2}\ km}

\rule{190}{1}

Let the total distance covered  by the bicycle be D

So,

\longrightarrow\rm{D=d_{1}+d_{2}}

\longrightarrow\rm{D=\dfrac{5}{6}+\dfrac{25}{2}}

\longrightarrow\rm{D=\dfrac{5+75}{6}}

\longrightarrow\rm{D=\dfrac{80}{6}}

\longrightarrow\rm\green{D=13.33\ km}

Hence, the total distance covered by bicycle is 13.33 km.


BrainIyMSDhoni: Great :)
Answered by rocky200216
32

\sf{\red{\underline{\underline{\purple{Correct\:Answer\::{\dfrac{40}{3}}\:or\:13.33k.m}}}}}

\bigstar \sf{\green{\underline{\underline{\orange{Given:-}}}}}

  • {initial\:velocity\:(u)\:=\:5\:{\dfrac{k.m}{h}}}
  • Time (t) = 10 minutes = 1/6 hr.

Also Given, the bicycle going on constant velocity .

  • \tt{\implies\:acceleration\:(a)\:=\:0}

\bigstar \sf{\green{\underline{\underline{\orange{To\:Find:-}}}}}

  • The total distance covered by bicycle .

\bigstar\sf{\green{\underline{\underline{\orange{CONCEPTS:-}}}}}

(☞ Equation of motion when Acceleration is Constant,

  • \tt{v\:=\:u\:+\:at}
  • \tt{s\:=\:ut\:+\:{\dfrac{1}{2}}\:at^2}
  • \tt{v^2-u^2\:=\:2as}

\bigstar \sf{\green{\underline{\underline{\orange{SOLUTION:-}}}}}

☞ Here , acceleration (a) = 0

\tt{s\:=\:ut\:+\:{\dfrac{1}{2}}\:at^2}

\tt{\implies\:s\:=ut}

\tt{\implies\:s\:=\:5\:\times\:{\dfrac{1}{6}}}

\tt{\implies\:s\:=\:{\dfrac{5}{6}}k.m} ----(1)

(☞ In case (2)

  • u = 5 km/h
  • v = 0
  • a = 1 km/h²

(☞ Using Equation of Motion as,

  • v² - u² = 2as
  • => 0 - 5² = 2×(-1)×s
  • => s = 25/2 k.m ------(2)

Hence total distance:Equation (1)+(2)

  • \tt{\implies\:13.33\:k.m}

\bigstar\:\underline{\boxed{\bf{\red{Required\:Answer\::13.33\:k.m\:}}}}


BrainIyMSDhoni: Great :)
Similar questions