Math, asked by shaivy41, 6 months ago


17. A diameter PQ bisects two chords AB and CD at Mand N respectively. Prove that AB || CD.

Answers

Answered by amitnrw
5

Given : A diameter PQ bisects two chords AB and CD at M and N respectively.

To Find : Prove that AB || CD.

Solution:

Diameter of circle always pa ss through center

diameter PQ pa ssed through center (let say O)

ΔOAM and ΔOBM

OA = OB  radius

AM = BM    ( as chord is bisected)

OM = OM  common

ΔOAM ≅ ΔOBM  (SSS)

=> ∠OMA = ∠OMB  CPCT

∠OMA +  ∠OMB = 180°   ( Linear Pair)

=> ∠OMA = ∠OMB  = 90°

Similarly    ∠ONC = ∠OND  = 90°

∠OMA = ∠NMA

∠OND  = ∠MND

∠NMA  = ∠MND  = 90°   ( alternate interior angles)

=> AB || CD

QED

Hence proved

Learn More:

7. If a transversal intersects two lines parallel lines then prove that ...

brainly.in/question/18440350

In the given figure, AB || CD || EF intersected by a transversal PQ at ...

brainly.in/question/19419493

Answered by ItzInnocentPrerna
10

\huge\mathcal\colorbox{red}{{\color{white}{ANSWER࿐}}}

\huge\color{navy}{\textbf{\textsf{ANSWER :}}}

\red\bigstar A diameter PQ bisects two chords AB & CD at M & N respectively.

\huge\color{navy}{\textbf{\textsf{TO FIND :}}}

\red\bigstar Prove that AB || CD.

\huge\color{navy}{\textbf{\textsf{SOLUTION :}}}

Diameter of circle always passes through the center,

\red\bigstar Let the center be O.

Diameter PQ passed through the center O,

\Large\bf\red{In\:\triangle{OAM}\:\&\:\triangle{OBM}\:} \\

\Large \rm{ { {OA = OB \: (Radius) }}}

\Large \rm{ { {AM = BM \: (Cord \: is \: bisected) }}}

\Large \rm{ { {OM = OM \: (Common) }}}

\Large \rm\triangle \: OAM ≅ \triangle \: OBM \: (SSS)

➜\Large \rm\angle OMA  =  \angle OMB \: (CPCT)

\Large \rm\angle OMA   +   \angle OMB  = 180° \:  (Linear \: pair)

➜\Large \rm\angle OMA  =  \angle OMB  = 90°

 \Large \rm{ {{Similarly }}}\Large \rm\angle ONC  =  \angle OND  = 90°

\Large \rm\angle OMA   =   \angle NMA

\Large \rm\angle OND   =   \angle MND

\Large \rm\angle NMA   =   \angle MND  = 90° \:  (Alternate \: interior \: angle)

➜\Large\bf\red{\:{AB}\:\|\:{CD}\:} \\

\huge\boxed{{\sf\red{Hence \: proved}}}

Hope it Helps Buddy ♥️

Similar questions