Math, asked by sanyavardhan808, 5 months ago

17
Perimeter of a rectangle of length
8 and breadth 6 is
a)14 unit
ООО
b)28 unit
c)48 unit​

Answers

Answered by Auяoяà
13

Given :

  • Length of rectangle = 8
  • Breadth of rectangle = 6

To find :

  • The perimeter of the rectangle.

Solution :

We know that,

★Perimeter of rectangle = 2(l + b)

[Here l = length and b = breadth]

A/Q

Perimeter (rectangle) = 2(8 + 6)

Perimeter (rectangle) = 2 × 14

Perimeter (rectangle) = 28

Therefore,

Option b) 28 units is the correct answer.

___________________________

More Information :

  • Perimeter of square = 4 × sides
  • Perimeter of triangle = Sum of all three sides
  • Perimeter of parallelogram = 2(Base + Height)
  • Perimeter of rhombus = 4 × sides
  • Perimeter of circle = 2πr

╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍╍


Anonymous: Perfect !
Answered by Anonymous
81

Given:-

  • Length of the rectangle = 8
  • Breadth of the rectangle = 6

To find:-

  • Perimeter of the rectangle.

We know that:-

\purple{\boxed{\sf{Perimeter_{(rectangle)}\ =\ 2(Length\:+\: Breadth)}}}

\implies 2 × 14 = 28

Hence,

Option b)

28 units is the answer.

━━━━━━━━━━━━━━━━━━━━

More to know:-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\rm{Area\;of\;Circle\;=\;\pi r^{2}}

\rm{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\rm{Perimeter\;of\; Square\;=\;4\;\times\;(Side)}

\rm{Perimeter\;of\;Circle\;=\:2\pi r}

━━━━━━━━━━━━━━━━━━━━


Anonymous: Splendid !
Similar questions