Math, asked by draison95961, 3 months ago

17x+23y=40 & 23x+17y=100 so x-y =?

Answers

Answered by 12thpáìn
176

\underline{\pink{\bf{Given}}}\\

  • { \sf17x + 23y = 40}\\
  • { \sf23x + 17y = 100}\\

\underline{\pink{\bf{To~Find}}}\\\\

  •  \sf \: x - y\\

\\\underline{\pink{\bf{Solution}}}\\

We have

\\{ \sf17x + 23y = 40} \:  \:  \:  \:  \:  -  -  -  - (1)\\\\

{ \sf23x + 17y = 100} \:  \:  \:  \:  \:  -  -  -  - (2)\\

On Solving Equation 1 We get,

\\{  \implies\sf17x + 23y = 40}

{  \implies\sf17x  = 40 - 23y}

{  \implies\sf x  = \cfrac{ 40 - 23y}{17}}\\\\

\\\text{\orange{Putting the value of x in Equation 2 We get,}}

\\ { \implies\sf23 \left(\cfrac{ 40 - 23y}{17} \right) + 17y = 100}

 { \implies\sf\cfrac{ (23 \times 40 )-(23 \times  23y)}{17}  + 17y = 100}

 { \implies\sf\cfrac{ 920 - 529y}{17}  + 17y = 100}

{ \implies\sf\cfrac{ 920 - 529y + 289y}{17}   = 100}

{ \implies\sf\cfrac{ 920 - 240y}{17}   = 100}

{ \implies\sf920 - 240y   = 100 \times 17}

{ \implies\sf- 240y   =1700 - 920}

{ \implies\sf- 240y   =780}

{ \implies\sf y   = \cfrac{ \:  \:  \xcancel{780}^{3.25} }{ \xcancel{ - 240}}}

{~~~~~~~ \green{\sf y   =  - 3.25}}\\\\

\text{\blue{Putting the value of Y in Equation 1 We get,}}\\\\

{\implies \sf17x + 23y = 40}

{ \implies\sf17x + 23 \times(  - 3.25 )= 40}

{\implies \sf17x  - 74.55= 40}

{ \implies\sf17x  = 40 + 74.75}

{\implies \sf x  =  \cfrac{40 + 74.75}{17}}

{\implies \sf x  =  \cfrac{114.75}{17}}

{ ~~~~~~~\orange{\sf x  = 6.75}}\\\\

 \implies\sf{Value  \: of \:  (x-y)= 6.75-(-3.25)}

\implies\sf{Value  \: of \:  (x-y)= 6.75 + 3.25}

~~~~~~~~~~~~\pink{\underbrace{\underline{\bf{\green{Value  \: of \:  (x-y)= \huge{10}}}}}}

Similar questions