17x² - 9xy + 8y² simplify
Answers
Answer:
g(x) = √( x² + y² )
But we need to find the minimun of x² + y² => f(x) = x² + y²
g(x) = 17x² + 12xy + 8y² - 100 = 0
F(x) = f - λg = x² + y² - λ( 17x² + 12xy + 8y² - 100 )
Fx = 2x - 34xλ - 12yλ
Fy = 2y - 12xλ - 16yλ
Fλ = -( 17x² + 2xy + 8y² - 100 )
Fx = Fy = Fλ = 0
{ 2x - 34xλ - 12yλ= 0
{ 2y - 12xλ - 16yλ = 0
{ 17x² + 2xy + 8y² - 100= 0
{ x - 17xλ - 6yλ = 0
{ y - 6xλ - 8yλ = 0
{ 17x² + 2xy + 8y² - 100= 0
{ λ( 17x + 6y ) = x
{ y = λ(6x+8y)
{ 17x² + 2xy + 8y² - 100= 0
{ λ = x / ( 17x + 6y )
{ λ = y / (6x+8y)
{ 17x² + 2xy + 8y² - 100= 0
{ x / ( 17x + 6y ) = y / ( 6x + 8y )
{17x² + 2xy + 8y² - 100= 0
{ x( 6x + 8y ) = y( 17x + 6y )
{ 17x² + 2xy + 8y² - 100= 0
{ 6x² + 8xy = 17xy + 6y²
{ 17x² + 2xy + 8y² - 100= 0
{ 6x² - 6y² = 9xy
{ 17x² + 2xy + 8y² - 100= 0
{ 2x² - 2y² = 3xy
{ 17x² + 2xy -8y2-100=0
Answer: