Math, asked by ramprasadghritlahre2, 5 months ago

18. Find the area of an equilateral triangle of side 2√2​

Answers

Answered by prince5132
26

GIVEN :-

  • Side of equilateral triangle = 2√2 units.

TO FIND :-

  • The area of an equilateral triangle.

SOLUTION :-

As we know that,

  \\  : \implies \displaystyle \sf \: Area \:  of  \: Equilateral  \: \triangle =   \frac{ \sqrt{3} }{4}  \times (side) ^{2}  \\  \\  \\

 : \implies \displaystyle \sf \: Area \:  of  \: Equilateral  \: \triangle =   \frac{ \sqrt{3} }{4}  \times (2 \sqrt{2} ) ^{2}  \\  \\  \\

 : \implies \displaystyle \sf \: Area \:  of  \: Equilateral  \: \triangle =   \frac{ \sqrt{3} }{4}  \times (2 \times 2 \times  \sqrt{2}  \times  \sqrt{2} ) \\  \\  \\

 : \implies \displaystyle \sf \: Area \:  of  \: Equilateral  \: \triangle =   \frac{ \sqrt{3} }{4}  \times (4 \sqrt{4} ) \\  \\  \\

 : \implies \displaystyle \sf \: Area \:  of  \: Equilateral  \: \triangle =   \frac{ \sqrt{3} }{4}  \times (4 \times 2) \\  \\  \\

 : \implies \displaystyle \sf \: Area \:  of  \: Equilateral  \: \triangle =   \frac{ \sqrt{3} }{4}  \times 8 \\  \\  \\

 : \implies \displaystyle \sf \: Area \:  of  \: Equilateral  \: \triangle =  2 \sqrt{3}  \\  \\  \\

 : \implies \underline{ \boxed{ \displaystyle \sf \: Area \:  of  \: Equilateral  \: \triangle =  3.46 \: unit ^{2} }} \\  \\

 \therefore\underline{\textsf{ Area of equilateral triangle is 3.46 .}}

Answered by Anonymous
114

\underline{\underline{\purple{\sf Given:}}}

  • Side of the Triangle = 2√2 units

\underline{\underline{\purple{\sf Find:}}}

  • Area of Triangle

\underline{\underline{\purple{\sf Solution:}}}

we, know that

\underline{\boxed{ \sf Area  \: of  \: equilateral \triangle =  \dfrac{\sqrt{3} }{4} \times {(side)}^{2}}}

where,

  • Side = 2√2 units

So,

\sf \to Area  \: of  \: equilateral \triangle =  \dfrac{\sqrt{3} }{4} \times {(side)}^{2}

\sf \to Area  \: of  \: equilateral \triangle =  \dfrac{\sqrt{3} }{4} \times {(2 \sqrt{2} )}^{2}

\sf \to Area  \: of  \: equilateral \triangle =  \dfrac{\sqrt{3} }{4} \times (4 \times 2)

\sf \to Area  \: of  \: equilateral \triangle =  \dfrac{\sqrt{3} }{ \not{4}} \times  \not{8}

\sf \to Area  \: of  \: equilateral \triangle  =  \sqrt{3}  \times 2

\sf \to Area  \: of  \: equilateral \triangle  = 2 \sqrt{3}   \: {units}^{2}

 \rule{300}{3}

Hence, the area of Triangle will be 23 units²

Similar questions