18. The diagonals AC and BD of a rhombus intersect each other at O. Prove that:
AB²+ BC²+CD + DA²= 4(0A²+OB²)
(Hint: The diagonals of a rhombus bisect each other at right angles.)
Answers
Step-by-step explanation:
Given :-
- The diagonals AC and BD of a rhombus intersect each other at ‘O’.
To prove :-
- AB²+ BC² + CD² + DA² = 4(OA² +OB²)
Solution :-
AC and BD are the diagonals of the rhombus. AC and BD intersect each other at the point ‘O’.
- AO = OC
- BO = OD
The diagonals of a rhombus bisect each other at right angles. (Given)
★In case of ∆ AOB,
AB² = OA² + OB²...............(i)
★In case of ∆ BOC,
BC² = OB² + OC² ...............(ii)
★ In case of ∆ COD,
CD² = OC² + OD²................(iii)
★ In case of ∆ DOA,
DA² = OA² + OD² .................(iv)
Now,
(i)+(ii)+(iii)+(iv)
AB² + BC² + CD² + DA² = OA² + OB² + OB² + OC² + OC² + OD² + OA² + OD²
→ AB² + BC² + CD² + DA² = 2OA² + 2OB² + 2OC² + 2OD²
→ AB²+ BC²+ CD²+ DA² = 2OA² + 2OB² + 2OA² + 2OB² [ •°• OA = OC , OB = OD]
→ AB²+ BC²+ CD²+ DA² = 4OA² + 4OB²
→ AB²+ BC²+ CD²+ DA² = 4(OA² + OB²)
Hence proved !
Answer:
It is easy friend
Step-by-step explanation:
As all the triangles formed by the diagonals of the rhombus are Right angled triangle.
taking️ triangle ABO ,️ triangle BOC,️triangle DOC and️ triangle DAO.
To prove:-AB²+BC²+CD²+DA²=4(OA²+OB²)
proof:-
In triangle ABO
Using pythagoras theorem,
AB²=OB²+AO² ....(i)
in triangle BOC
Using pythagoras theorem,
CB²=OB²+OC² ....(ii)
in triangle DAO
using pythagoras theorem,
AD²=DO²+OA²....(iii)
in triangle DOC
using pythagoras theorem,
CD²=DO²+OC²....(iv)
Adding equations (i),(ii),(iii),(iv).
we get :-
AB²+BC²+CD²+DA²=OB²+AO²+OB²+OC²+DO²+OC²+DO²+AO²
or, AB²+BC²+CD²+DA²= 2(OB²+AO²+OC²+DO²)
We know,
OB=DO(given)
or,OB²=DO²(Taking DO² as OB² as both are equal)
and, OC=AO(given)
or,OC²=AO²(Taking OC² as AO² as both are equal)
so,
AB²+BC²+CD²+DA²= 2(OB²+OC²+OC²+OB²)
or,AB²+BC²+CD²+DA²=4(OB²+OC²)
Hence proved,
*Thank Uhhhh!!!*