18. Without actual division, show that (r-3x2 - 13x +15) is exactly
divisible by (x² + 2x - 3).
Answers
Answer:
Here's your answer :-
\begin{gathered} {x}^{2} + 2x - 3 \\ = {x}^{2} + 3x - x - 3 \\ = x(x + 3) - 1(x + 3) \\ = (x + 3)(x - 1)\end{gathered}
x
2
+2x−3
=x
2
+3x−x−3
=x(x+3)−1(x+3)
=(x+3)(x−1)
\begin{gathered}x + 3 = 0 \\ = > x = - 3\end{gathered}
x+3=0
=>x=−3
\begin{gathered}( { - 3})^{3} - 3 \times( { - 3})^{2} - 13 \times - 3 + 15 \\ = > - 27 - 3 \times 9 + 39 + 15 \\ = > - 27 - 27 + 54 \\ = > - 54 + 54 \\ = > 0\end{gathered}
(−3)
3
−3×(−3)
2
−13×−3+15
=>−27−3×9+39+15
=>−27−27+54
=>−54+54
=>0
\begin{gathered}x - 1 = 0 \\ = > x = 1\end{gathered}
x−1=0
=>x=1
\begin{gathered} {1}^{3} - 3 \times {1}^{2} - 13 \times 1 + 15 \\ = > 1 - 3 - 13 + 15 \\ = > - 16 + 16 \\ = > 0\end{gathered}
1
3
−3×1
2
−13×1+15
=>1−3−13+15
=>−16+16
=>0
\begin{gathered}as \: x + 3 \: and \: x - 1 \: is \: divisible \: by \: {x}^{3} - 3 {x}^{2} - 13x + 15 \: \\ so \: {x}^{2} + 2x - 3 \: is \: also \: divisible\end{gathered}
asx+3andx−1isdivisiblebyx
3
−3x
2
−13x+15
sox
2
+2x−3isalsodivisible
Hope it helps
Step-by-step explanation:
anser is write make mebrsin least