19. IC A, B, C, D be the angles of a cyclic quadrilateral, show that
COSA + cosB + cosC + cosD = 0.
Answers
Answered by
1
Answer:
Given ABCD is cyclic
A+C=180
B+D=180
cosA=cos(180 −C)=−cosC...(1)
cosB=cos(180 −D)=−cosD...(2)
Adding eqs (1) and (2) we get
cosA+cosB=−cosC−cosD
=cosA+cosB+cosC+cosD=0
Hence proved
Answered by
1
Step-by-step explanation:
A+C=180°
B+D=180°
cos A=cos(180°-C)=-cos C
similarly, cos B=-cos D
therefore, cos A+cos c=0
and cos B+cos D=0
cos A+cos C+ cos B+cos D=0
Similar questions
Math,
4 months ago
Social Sciences,
4 months ago
Math,
4 months ago
Physics,
9 months ago
Science,
1 year ago