Math, asked by itzsehaj, 6 hours ago

19.The diameter of a roller is 84 cm and its length is 120 cm. It takes 500 complete revolutions to move once over to level a playground. Find the area of the playground in m2.

NO SPAM
NEED Verified answer with full explanation

Answers

Answered by Anonymous
22

Answer:

Diagram :

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{42\ cm}}\put(9,17.5){\sf{84\ cm}}\end{picture}

\begin{gathered}\end{gathered}

Given :

  • The diameter of a roller is 84 cm and its length is 120 cm.
  • It takes 500 complete revolutions to move once over to level a playground.

\begin{gathered}\end{gathered}

To Find :

  • The area of the playground in m².

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow\underline{\boxed{\sf{Radius =  \dfrac{Diameter}{2}}}}

\longrightarrow\underline{\boxed{\sf{CSA  \: of  \: cylinder = 2 \pi rh }}}

\begin{gathered}\end{gathered}

Solution :

☼ Finding radius of cylinder by substituting the values in the formula :-

\longrightarrow{\sf{Radius =  \dfrac{Diameter}{2}}}

\longrightarrow{\sf{Radius =  \dfrac{84}{2}}}

\longrightarrow{\sf{Radius =  \cancel\dfrac{84}{2}}}

\longrightarrow{\sf{Radius =42 \: cm}}

\longrightarrow{\underline{\boxed{\sf{\red{Radius =42 \: cm}}}}}

∴ The radius of cylinder is 42 cm.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Now, finding the curved surface area of cylinder by substituting the values in the formula :-

\longrightarrow{\sf{CSA  \: of  \: cylinder = 2 \pi rh }}

{\longrightarrow{\sf{CSA  \: of  \: cylinder = 2  \times  \dfrac{22}{7} \times 42 \times 120}}}

{\longrightarrow{\sf{CSA  \: of  \: cylinder = 2  \times  \dfrac{22}{\cancel{7}} \times  \cancel{42} \times 120}}}

{\longrightarrow{\sf{CSA  \: of  \: cylinder = 2  \times  22\times 6\times 120}}}

{\longrightarrow{\sf{CSA  \: of  \: cylinder = 31680 \:  {cm}^{2} }}}

{\longrightarrow{\underline{\boxed{\sf{\red{CSA  \: of  \: cylinder = 31680 \:  {cm}^{2}}}}}}}

∴ The CSA of cylinder is 31680 cm².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Now, finding area of 500 revolutions :-

 \longrightarrow{\sf{Area = 500 \times 31680}}

 \longrightarrow{\sf{Area = 15840000 \:  {cm}^{2} }}

 \longrightarrow{\sf{Area = 15840000  \times  \dfrac{1}{100} \times  \dfrac{1}{100}}}

 \longrightarrow{\sf{Area = 15840000  \times  \dfrac{1}{10000}}}

 \longrightarrow{\sf{Area = \dfrac{15840000}{10000}}}

 \longrightarrow{\sf{Area =  \cancel{\dfrac{15840000}{10000}}}}

 \longrightarrow{\sf{Area = 1584 \:  {m}^{2}}}

{\longrightarrow{\underline{\boxed{\sf{\red{Area = 1584 \:  {m}^{2}}}}}}}

∴ The area of playground is 1584 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Learn More :

\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}

 \rule{300}1.5

Answered by ItzzTwinklingStar
21

Given :

  • Diameter of the roller = 84cm
  • Length of the roller = 120cm
  • Roller takes 500 complete revolutions to move once over to level playground.

To Find :

  • Area of the Playground in m²

Solution :

at first we find ,

the Radius of the Roller :

 :  \implies \sf \: Diameter = 2 × Radius

 :  \implies \sf Radius =  \frac{Diameter}{2}

 :  \implies \sf Radius = ( \frac{84}{2}) cm

 :  \implies { \boxed {\frak{ \red{ Radius = 42cm}}}}  \:  \: \bigstar

Now,

Finding Area of the Roller :

Area of the Roller = Curved Surface Area of Roller

:  \implies \sf \: Area = 2πrh

 \sf:  \implies  \:  Area = (2 ×  \frac{22}{7} × 42 × 120) cm²

 \sf:  \implies  \: Area = (2 × 22 × 6 × 120) cm²

:  \implies \sf \: Area = (44 × 720) cm²

: \implies{ \boxed {\frak{ \green{ Area \:  of  \: Roller = 31,680 cm² }}}}   \\

Finding Area of the Playground :

 \sf:  \implies \: Area \:  of \:  1  \: revolution = Area  \: of  \: Roller = 31680cm²

 \sf:  \implies  \: Area  \: of \:  500  \: revolution = (500 × 31680) cm²

: \implies{ \boxed {\frak{ \purple{ Area  \: of \:  500 \:  revolution = 1,58,40,000 cm²</p><p> }}}}   \\

Converting the Area into m² :

 \sf:  \implies 1,58,40,000 ×  \frac{1}{100}  × \frac{1}{100}  m²

:  \implies \sf \: 1,58,400 × \frac{1}{100}  m²

: \implies{ \boxed {\frak{ \blue{ 1584 m²}}}}   \\

Therefore ,

Area of the Playground is 1584m²

Similar questions