Math, asked by nearvi6436, 10 months ago

19The area of a triangle is 150 cm^2 and its sides are in the ratio 3 : 4 : 5. What is its perimeter?

Answers

Answered by gautamkumar118
9

Step-by-step explanation:

Let the sides to be 3x, 4x and 5x.

Semi-Perimeter of triangle = 3x+4x+5x/2 = 12x/2 = 6x

By using Hero's formula,

area \: of \: triangle \:  =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  150 \: {cm}^{2}   =  \sqrt{6x(6x - 3x)(6x - 4x)(6x - 5x)}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  150 \: {cm}^{2} =  \sqrt{6x \times 3x \times 2x \times x}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  150 \: {cm}^{2} =  \sqrt{36 {x}^{4} } \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   150 \: {cm}^{2} = 6 {x}^{2}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{150  \: {cm}^{2} }{6}  =  {x}^{2}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  25 \:  {cm}^{2}  =  {x}^{2}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sqrt{25 \:  {cm}^{2} }  = x \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{x = 5} \: cm

So,

1st side = 3x = 3×5 = 15 cm

2nd side = 4x = 4×5 = 20 cm

3rd side = 5x =5×5 = 25cm

Hence,

perimeter of triangle = sume of all side

= 15+20+25 cm

= 60 cm

I hope you like it and mark brainliest answer.

Answered by tanishtanish444
0

Answer:

hole it help you look the upper image

i thing it help you in understanding the question

thanku

Attachments:
Similar questions