Math, asked by robithr6711, 10 months ago

1f alpha and beta are the zeros of the quadratic polynomial p(x) = 4x²- 5x -1, find the value of a²ß+ aß²

Answers

Answered by BrainlyConqueror0901
76

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha^{2}\beta+\alpha\beta^{2}=\frac{-5}{16}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies p(x) = 4 {x}^{2}  - 5x - 1  \\ \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies  { \alpha }^{2}  \beta  +  \alpha  { \beta }^{2}  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {4x}^{2}  - 5x - 1 = 0 \\  \\ \tt \circ  \: a = 4 \\  \\  \tt \circ \: b =  - 5 \\  \\  \tt \circ \ c =  - 1  \\  \\ \tt:\implies sum\:of\:zeroes=\frac{-b}{a}\\\\ \tt:\implies \alpha+\beta=\frac{-(-5)}{4}=\frac{5}{4}\\\\ \tt:\implies Product\:of\:zeroes=\frac{c}{a}\\\\ \tt:\implies \alpha\beta=\frac{-1}{4}\\\\ \bold{For\:finding\:value}\\\tt:\implies \alpha^{2}\beta+\alpha\beta^{2}\\\\ \tt:\implies \alpha\beta{(\alpha+\beta)}\\\\ \tt:\implies \frac{-1}{4}\times \frac{5}{4}\\\\ \green{\tt:\implies \frac{-5}{16}}\\\\ \green{\tt\therefore \alpha^{2}\beta+\alpha\beta^{2}=\frac{-5}{16}}

 \bold{Alternate \:method} \\  \tt:  \implies  {4x}^{2}  - 5x - 1 = 0 \\  \\ \tt \circ  \: a = 4 \\  \\  \tt \circ \: b =  - 5 \\  \\  \tt \circ \: c =  - 1  \\  \\  \tt:  \implies x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\  \tt:  \implies x =  \frac{ - ( - 5) \pm \sqrt{( - 5)^{2} - 4 \times 4 \times ( - 1) } }{2 \times 4}  \\  \\  \tt:  \implies x =  \frac{5 \pm \sqrt{25 + 16} }{8}  \\  \\   \green{\tt: \implies x =  \frac{5 \pm \sqrt{41} }{8}}  \\  \\ \bold{for \: finding \: value} \\  \tt:  \implies  { \alpha }^{2}  \beta  +  \alpha  { \beta }^{2}  \\  \\ \tt:  \implies (\frac{5 +  \sqrt{41} }{8} )^{2}  \times  \frac{5 -  \sqrt{41} }{8}  +  \frac{5 +  \sqrt{41} }{8}  \times ( { \frac{5 -  \sqrt{41} }{8} })^{2}  \\  \\  \tt \circ \:  \sqrt{41} =  6.4\\   \\ \tt:  \implies  (\frac{5 + 6.4}{8} )^{2}  \times  \frac{5 - 6.4}{8}  +  \frac{5 + 6.4}{8}  \times  {( \frac{5 - 6.4}{8} })^{2}  \\  \\ \tt:  \implies (\frac{11.4}{8} )^{2}  \times  \frac{ - 1.4}{8}  +  \frac{11.4}{8}  \times (\frac{ - 1.4}{8} )^{2}  \\  \\ \tt:  \implies \frac{129.96}{64}  \times  \frac{ - 1.4}{8}  +  \frac{11.4}{8}  \times  \frac{ - 1.96}{64}  \\  \\ \tt:  \implies \frac{ - 181.496}{512}  +  \frac{ - 22.344}{512}  \\  \\ \tt:  \implies \frac{181.496 - 22.344}{ 512}  \\  \\ \tt:  \implies \frac{ - 203.84}{512}  \\  \\  \green{\tt:  \implies - 0.39} \\  \\    \green{\tt\therefore  { \alpha }^{2}  \beta  +  { \alpha  \beta }^{2}   \approx  - 0.4}

Answered by Shubhendu8898
35

Answer:

Answer: -5/16

Explanation:-

Step-by-step explanation:

Given,

p(x) = 4x² - 5x - 1

On comparing this polynomial with standard form of Polynomial of second degree,

p(x) = ax² + bx + c

We get,

a = 4

b = - 5

c = - 1

We know that,

Sun of Roots = -b/a

α + β = -(-5)/4

α + β = 5/4

And,

Product of Roots = c/a

αβ = -1/4

Now,

α²β + αβ²

= αβ(α + β)

= -1/4( 5/4 )

= -5/16

Similar questions