1fA is not an integral multiple of pi , prove that cos A.cos2A.cos 4A.cos 8A=
sin 16A/16sinA
Answers
Answer:
plzzz give me brainliest ans and plzzzz follow me please
Let's start by using the following trigonometric identity:
sin 2θ = 2 cos θ sin θ
Using this identity, we can write:
cos A cos 2A = (1/2)(cos 3A + cos A)
cos 4A cos 8A = (1/2)(cos 12A + cos 4A)
Now, substituting these expressions into the given expression, we get:
cos A cos 2A cos 4A cos 8A = [(1/2)(cos 3A + cos A)][(1/2)(cos 12A + cos 4A)]
Expanding this expression, we get:
cos A cos 2A cos 4A cos 8A = (1/4)[cos 3A cos 12A + cos A cos 12A + cos 3A cos 4A + cos A cos 4A]
Using the identity cos x cos y = (1/2)(cos(x+y) + cos(x-y)), we can simplify this expression further:
cos A cos 2A cos 4A cos 8A = (1/8)[cos 15A + cos 9A + cos 7A + cos A]
Now, let's use the following identity:
sin 2θ sin 4θ sin 8θ sin 16θ = (1/16) sin 32θ
We can rewrite the denominator of the given expression as:
16 sin A = 2(2 sin A) = 2 sin 2A
= 2(2 sin 2A) = 4 sin 4A
= 4(2 sin 4A) = 8 sin 8A
= 8(2 sin 8A) = 16 sin 16A
Therefore, the given expression can be rewritten as:
cos A cos 2A cos 4A cos 8A = (1/8)[cos 15A + cos 9A + cos 7A + cos A]
= (1/16)[2(cos 15A + cos 9A + cos 7A + cos A)](16 sin A)
= (1/16) [2(cos 15A + cos 9A + cos 7A + cos A)](2 sin 2A)(4 sin 4A)(8 sin 8A)
= (1/16) sin 16A
#SPJ6