Math, asked by abcbos789, 3 months ago

1Find dy/dx if (x √(a-x))/√(a +x )

Answers

Answered by Anonymous
3

Solution:-

= \frac{[ \sqrt{a}+x]+[ \sqrt{a}-x]}{[ \sqrt{a}+x]-[ \sqrt{a}-x]} * \frac{[ \sqrt{a}+x]+[ \sqrt{a}-x]}{[ \sqrt{a}+x]+[ \sqrt{a}-x]}

= \frac{ [ \sqrt{a}+x]+[ \sqrt{a}-x]^{2} }{[ \sqrt{a}+x]^{2} -[ \sqrt{a}-x]^{2} }

= \frac{ [ \sqrt{a}+x]^{2}+[ \sqrt{a}-x]^{2}+2[ \sqrt{a}+x][ \sqrt{a}-x] }{[ \sqrt{a}+x]^{2} -[ \sqrt{a}-x]^{2} }

= \frac{4a}{4x \sqrt{a}}

= \frac{ \sqrt{a} }{x}

Now if

x=\frac{2ab}{1+ b^{2} }

then we get

\frac{ \sqrt{a} }{2ab}*[1+ b^{2}]

\frac{ [1+ b^{2}] }{2b \sqrt{a} }

Answered by sanju2363
6

Solution:-

 \bf{= \frac{[ \sqrt{a}+x]+[ \sqrt{a}-x]}{[ \sqrt{a}+x]-[ \sqrt{a}-x]}  \times  \frac{[ \sqrt{a}+x]+[ \sqrt{a}-x]}{[ \sqrt{a}+x]+[ \sqrt{a}-x]}}

 \bf \: = \frac{ [ \sqrt{a}+x]+[ \sqrt{a}-x]^{2} }{[ \sqrt{a}+x]^{2} -[ \sqrt{a}-x]^{2} }

 \bf \: = \frac{ [ \sqrt{a}+x]^{2}+[ \sqrt{a}-x]^{2}+2[ \sqrt{a}+x][ \sqrt{a}-x] }{[ \sqrt{a}+x]^{2} -[ \sqrt{a}-x]^{2} }

 \bf \: = \frac{4a}{4x \sqrt{a}}

 \bf \: = \frac{ \sqrt{a} }{x}

Now if

 \bf \: x=\frac{2ab}{1+ b^{2} }

then we get

 \bf \: \frac{ \sqrt{a} }{2ab}*[1+ b^{2}]

 \bf \: \frac{ [1+ b^{2}] }{2b \sqrt{a} }

Similar questions