1ml of water is taken from the surface to the bottom of ocean of 8 km depth . The change in volume of water at the depth is ( Bulk modulus of water is 21000 atmosphere)
Answers
Answered by
1
Hlw mate!!
We know one thing
P = P₀ + ρgh
Where P₀ is the atmospheric pressure , g is acceleration due to gravity, h is the height from the Earth surface and ρ is density of water
Here, P₀ = 10⁵ N/m² , g = 10m/s² , h = 3000m and ρ = 10³ Kg/m³
Now, P = 10⁵ + 10³ × 10 × 3000 = 3.01 × 10⁷ N/m²
Again, we have to use formula,
B = P/{-∆V/V}
Here, B is bulk modulus and { -∆V/V} is the fractional compression
So, -∆V/V = P/B
Put , P = 3.01 × 10⁷ N/m² and B= 2.2 × 10⁹ N/m²
∴ fractional compression = 3.01 × 10⁷/2.2 × 10⁹ = 1.368 × 10⁻²
Hope it helpful
We know one thing
P = P₀ + ρgh
Where P₀ is the atmospheric pressure , g is acceleration due to gravity, h is the height from the Earth surface and ρ is density of water
Here, P₀ = 10⁵ N/m² , g = 10m/s² , h = 3000m and ρ = 10³ Kg/m³
Now, P = 10⁵ + 10³ × 10 × 3000 = 3.01 × 10⁷ N/m²
Again, we have to use formula,
B = P/{-∆V/V}
Here, B is bulk modulus and { -∆V/V} is the fractional compression
So, -∆V/V = P/B
Put , P = 3.01 × 10⁷ N/m² and B= 2.2 × 10⁹ N/m²
∴ fractional compression = 3.01 × 10⁷/2.2 × 10⁹ = 1.368 × 10⁻²
Hope it helpful
Similar questions