1stangle(∠DBE)=(x+3)
∘
\sf{2nd\: angle \: (\angle{DBC}) = {(x + 20)}^\circ}2ndangle(∠DBC)=(x+20)
∘
\sf{3rd\: angle\: (\angle{CBF}) = {(x + 7)}^\circ}3rdangle(∠CBF)=(x+7)
∘
To find:-
\sf{Value\: of\: x }Valueofx
Solution:-
\sf{\angle{DBE} + \angle{DBC} + \angle{CBF} = {180}^\circ\:\:\:\:(Linear\: Pair)}∠DBE+∠DBC+∠CBF=180
∘
(LinearPair)
= \sf{{(x + 3)}^\circ + {(x + 20)}^\circ + {(x + 7)}^\circ = {180}^\circ}(x+3)
∘
+(x+20)
∘
+(x+7)
∘
=180
∘
=> \sf{x + {3}^\circ + x + {20}^\circ + x + {7}^\circ = {180}^\circ}x+3
∘
+x+20
∘
+x+7
∘
=180
∘
=> \sf{3x + {30}^\circ = {180}^\circ}3x+30
∘
=180
∘
=> \sf{3x = {180}^\circ - {30}^\circ}3x=180
∘
−30
∘
=> \sf{3x = {150}^\circ}3x=150
∘
=> \sf{x = \dfrac{150^\circ}{3}}x=
3
150
∘
=> \sf{x = {50}^\circ}x=50
∘
\sf{\therefore\: The\: value\: of \: x \: is\: {50}^\circ}∴Thevalueofxis50
∘
Now,
The measure of each angle:-
\sf{\angle{DBE} = {(x + 3)}^\circ = {(50 + 3)}^\circ = {53}^\circ}∠DBE=(x+3)
∘
=(50+3)
∘
=53
∘
\sf{\angle{DBC} = {(x + 20)}^\circ ={( 50 + 20)}^\circ = {70}^\circ}∠DBC=(x+20)
∘
=(50+20)
∘
=70
∘
\sf{\angle{CBF} = {(x + 7)}^\circ = {(50 + 7)}^\circ = {57}^\circ}∠CBF=(x+7)
∘
=(50+7)
∘
=57
∘
Answers
Answered by
1
Answer:
Answered by
1
angle EBD=(x+3)
angle CBF=(x+7)
angle DBC=(x+20)
so,angle EBC=(x+17)
EBD+EBC+CBF=180
x+3+×+17+×+7=180
or 3x+27=180
or 3x=180-27
or3x=153
or x=51
Explanation:
plz mark me brainlist
Similar questions