CBSE BOARD X, asked by ALANWALKER2083, 5 months ago

1stangle(∠DBE)=(x+3)


\sf{2nd\: angle \: (\angle{DBC}) = {(x + 20)}^\circ}2ndangle(∠DBC)=(x+20)


\sf{3rd\: angle\: (\angle{CBF}) = {(x + 7)}^\circ}3rdangle(∠CBF)=(x+7)


To find:-
\sf{Value\: of\: x }Valueofx
Solution:-
\sf{\angle{DBE} + \angle{DBC} + \angle{CBF} = {180}^\circ\:\:\:\:(Linear\: Pair)}∠DBE+∠DBC+∠CBF=180

(LinearPair)

= \sf{{(x + 3)}^\circ + {(x + 20)}^\circ + {(x + 7)}^\circ = {180}^\circ}(x+3)

+(x+20)

+(x+7)

=180



=> \sf{x + {3}^\circ + x + {20}^\circ + x + {7}^\circ = {180}^\circ}x+3

+x+20

+x+7

=180



=> \sf{3x + {30}^\circ = {180}^\circ}3x+30

=180



=> \sf{3x = {180}^\circ - {30}^\circ}3x=180

−30



=> \sf{3x = {150}^\circ}3x=150



=> \sf{x = \dfrac{150^\circ}{3}}x=
3
150





=> \sf{x = {50}^\circ}x=50



\sf{\therefore\: The\: value\: of \: x \: is\: {50}^\circ}∴Thevalueofxis50



Now,

The measure of each angle:-

\sf{\angle{DBE} = {(x + 3)}^\circ = {(50 + 3)}^\circ = {53}^\circ}∠DBE=(x+3)

=(50+3)

=53



\sf{\angle{DBC} = {(x + 20)}^\circ ={( 50 + 20)}^\circ = {70}^\circ}∠DBC=(x+20)

=(50+20)

=70



\sf{\angle{CBF} = {(x + 7)}^\circ = {(50 + 7)}^\circ = {57}^\circ}∠CBF=(x+7)

=(50+7)

=57

Answers

Answered by devip649
1

Answer:

{\angle{CBF} = {(x + 7)}^\circ = {(50 + 7)}^\circ = {57}^\circ}∠CBF=(x+7) </p><p>∘</p><p>=(50+7) </p><p>∘</p><p>=57

Answered by ankushyadav30012007
1

angle EBD=(x+3)

angle CBF=(x+7)

angle DBC=(x+20)

so,angle EBC=(x+17)

EBD+EBC+CBF=180

x+3+×+17+×+7=180

or 3x+27=180

or 3x=180-27

or3x=153

or x=51

Explanation:

plz mark me brainlist

Similar questions