Math, asked by YOURDIWAANI, 1 month ago

1T
(v) tan 2 tan
1
7
+ = 0
5 4) 17
금​

Answers

Answered by SmitaMissinnocent
1

Answer:

 \bf \purple{i \:  \: think \:the \:  question \: is}

tan(2 {tan}^{ - 1}  \frac{1}{5}  -  \frac{\pi}{4} ) +  \frac{7}{17}  = 0

 \fbox \pink{answer:-}

 = ( {tan}^{ - 1} ( \frac{ \frac{2 \times 1}{5} }{1 -  \frac{1}{25} }  ) -  \frac{\pi}{4}  ) +  \frac{7}{17}  \\  \\  = (tan( {tan}^{ - 1}  \frac{ \frac{2}{5} }{ \frac{24}{25} }  -  \frac{\pi}{4} )) +  \frac{7}{17}  \\  \\  =  \tan( {tan}^{ - 1} ) ( \frac{2 \times 5}{25}  -  \frac{\pi}{4} ) +  \frac{7}{17}  \\  \\  =  \frac{tan \times  {tan}^{ - 1} \frac{10}{24} - tan \frac{\pi}{4}   }{1 - tan \times  {tan}^{ - 1} \frac{10}{24}  \times tan \frac{\pi}{4}  } +  \frac{7}{17}  \\  \\  =  \frac{ \frac{10}{24} - 1 }{1 +  \frac{10}{24} \times 1 }   +  \frac{7}{17}  \\  \\  =  \frac{ \frac{10 - 24}{24} }{ \frac{24 + 10}{24} }  +  \frac{7}{17}  \\  \\  =  \frac{ - 14}{34}  +  \frac{7}{17}  = 0

Similar questions