Math, asked by sowmyaskv, 7 months ago

-2(1/2) +2x <=4x/5 <=4/3+2x
Can anyone pls solve this​

Attachments:

Answers

Answered by pulakmath007
18

SOLUTION

TO SOLVE

The inequality

 \displaystyle \sf{ - 2 \frac{1}{2}  + 2x \leqslant  \frac{4x}{5}  \leqslant  \frac{4}{3} + 2x \:  \:  \: ,  \:  \: x \in \:  W }

EVALUATION

Here the given inequality is

 \displaystyle \sf{ - 2 \frac{1}{2}  + 2x \leqslant  \frac{4x}{5}  \leqslant  \frac{4}{3} + 2x \:}

We solve the inequality as below

 \displaystyle \sf{ - 2 \frac{1}{2}  + 2x \leqslant  \frac{4x}{5}  \leqslant  \frac{4}{3} + 2x \:}

 \displaystyle \sf{  \implies  \:   -  \frac{5}{2}  + 2x \leqslant  \frac{4x}{5}  \leqslant  \frac{4}{3} + 2x \:}

 \displaystyle \sf{  \implies  \:   -  \frac{5}{2}  + 2x - 2x \leqslant  \frac{4x}{5}  - 2x \leqslant  \frac{4}{3} + 2x - 2x \:}

 \displaystyle \sf{  \implies  \:   -  \frac{5}{2}   \leqslant  -  \frac{6x}{5} \leqslant  \frac{4}{3}\:}

 \displaystyle \sf{  \implies  \:   \bigg( -  \frac{5}{2}  \times 30 \bigg) \leqslant \bigg( -  \frac{6x}{5} \times 30\bigg) \leqslant  \bigg(\frac{4}{3} \times 30\bigg)\:}

 \displaystyle \sf{  \implies  \:    - 75 \leqslant  - 36x \leqslant  40\:}

 \displaystyle \sf{  \implies  \:    - 40 \leqslant   36x \leqslant  75\:}

 \displaystyle \sf{  \implies  \:    -  \frac{10}{9}  \leqslant   x \leqslant   \frac{25}{12} \:}

Since x ∈ W where W is the whole number set

So x = 0 , 1 , 2

Hence the required solution set is

S = { 0 , 1 , 2 }

Number line : Number line is referred to the attachment . On the number A , B , C represents the numbers 0 , 1 , 2 respectively

FINAL ANSWER

Hence the required solution set is

S = { 0 , 1 , 2 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Check whether the half plane x+2y ≥ 4 contains origin

https://brainly.in/question/33659939

2. Solve 3x<12=0 when x is a real number and natural number

https://brainly.in/question/13005861

Attachments:
Similar questions