Math, asked by devansh9495, 9 months ago

2ϴ/(1−ϴ)+ 3ϴ/(ϴ−ϴ)= (1+sinϴcosϴ)
PROVE THE STATEMENT ​

Answers

Answered by vihu14
1

Step-by-step explanation:

\sec(\theta)= \dfrac{1}{\cos(\theta)}sec(θ)=

cos(θ)

1

\sec, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, cosine, left parenthesis, theta, right parenthesis, end fraction

Explain

\csc(\theta)= \dfrac{1}{\sin(\theta)}csc(θ)=

sin(θ)

1

\csc, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, sine, left parenthesis, theta, right parenthesis, end fraction

Explain

\cot(\theta)= \dfrac{1}{\tan(\theta)}cot(θ)=

tan(θ)

1

cotangent, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, tangent, left parenthesis, theta, right parenthesis, end fraction

Explain

\tan(\theta)= \dfrac{\sin(\theta)}{\cos(\theta)}tan(θ)=

cos(θ)

sin(θ)

tangent, left parenthesis, theta, right parenthesis, equals, start fraction, sine, left parenthesis, theta, right parenthesis, divided by, cosine, left parenthesis, theta, right parenthesis, end fraction

Explain

\cot(\theta)= \dfrac{\cos(\theta)}{\sin(\theta)}cot(θ)=

sin(θ)

cos(θ)

Similar questions