2ϴ/(1−ϴ)+ 3ϴ/(ϴ−ϴ)= (1+sinϴcosϴ)
PROVE THE STATEMENT
Answers
Step-by-step explanation:
\sec(\theta)= \dfrac{1}{\cos(\theta)}sec(θ)=
cos(θ)
1
\sec, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, cosine, left parenthesis, theta, right parenthesis, end fraction
Explain
\csc(\theta)= \dfrac{1}{\sin(\theta)}csc(θ)=
sin(θ)
1
\csc, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, sine, left parenthesis, theta, right parenthesis, end fraction
Explain
\cot(\theta)= \dfrac{1}{\tan(\theta)}cot(θ)=
tan(θ)
1
cotangent, left parenthesis, theta, right parenthesis, equals, start fraction, 1, divided by, tangent, left parenthesis, theta, right parenthesis, end fraction
Explain
\tan(\theta)= \dfrac{\sin(\theta)}{\cos(\theta)}tan(θ)=
cos(θ)
sin(θ)
tangent, left parenthesis, theta, right parenthesis, equals, start fraction, sine, left parenthesis, theta, right parenthesis, divided by, cosine, left parenthesis, theta, right parenthesis, end fraction
Explain
\cot(\theta)= \dfrac{\cos(\theta)}{\sin(\theta)}cot(θ)=
sin(θ)
cos(θ)