Math, asked by manumanu464667545774, 2 months ago

2
-------------
2-2√3
class 9
topic : rationalise the denominator​

Answers

Answered by Dinosaurs1842
23

Question :-

\longrightarrow \sf Rationalize\:  \dfrac{2}{2-\sqrt{3} }

Answer :-

In order to rationalize the denominator, we have to multiply the numerator and the denominator with the denominator's inverse, such that (a-b)(a+b) identity is formed.

  • Denominator's value = 2 - √3
  • Inverse = 2 + √3

\sf Multiplying\:the\:number\:with\:\dfrac{2+\sqrt{3} }{2+\sqrt{3} } ,

\implies \sf  \dfrac{2}{2-\sqrt{3} }\times \dfrac{2+\sqrt{3} }{2+\sqrt{3} } ,

\implies \sf \dfrac{2(2+\sqrt{3} )}{(2-\sqrt{3} )(2+\sqrt{3} )}

Applying the identity (a-b)(a+b) = a² - b² in the denominator,

\implies \sf \dfrac{4 + 2\sqrt{3} }{(2)^{2} - (\sqrt{3})^{2}}

\implies \sf \dfrac{4 + 2\sqrt{3} }{4 - 3}

\implies \sf \dfrac{4 + 2\sqrt{3} }{1}

\implies \sf 4 + 2\sqrt{3}

\sf Therefore, the\: rationalized\:form \:of \:\dfrac{2}{2-\sqrt{3}}\:\: is\: 4 + 2\sqrt{3}

Identities :-

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a - b)(a + b)
  • (x + a)(x + b) = x² + x(a + b) + ab
  • (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

Similar questions