Math, asked by sadhana2484, 11 months ago

√2/ √ 2 +√3 +√ 5 ratiionalise denominator

Answers

Answered by soham2395
0

Step-by-step explanation:

please ask in comments if any doubt and mark me the brainliest

Attachments:
Answered by tahseen619
1

Answer:

\frac{ \sqrt{6} -  \sqrt{15}   + 3}{12}  \\

Step-by-step explanation:

 \frac{ \sqrt{2} }{ \sqrt{2}  +  \sqrt{3} +  \sqrt{5}  }  \\  \\  \frac{ \sqrt{2} [( \sqrt{2}  +  \sqrt{3} ) -  \sqrt{5}  ] \: }{[( \sqrt{2 }+  \sqrt{3} )  +   \sqrt{5} ) ][( \sqrt{2} +  \sqrt{3}) -  \sqrt{5}  ) ]}  \\  \\  \frac{2 +  \sqrt{3.2}  -  \sqrt{2.5} }{ {( \sqrt{2 } +  \sqrt{3})  }^{2} -(  \sqrt{5}  ) ^{2} }  \\  \\  \frac{2 +  \sqrt{6}  -  \sqrt{10} }{ {( \sqrt{2} })^{2} +  {( \sqrt{3}) }^{2}  + 2. \sqrt{2} . \sqrt{3} -  5}  \\  \\  \frac{2 +  \sqrt{6}   -   \sqrt{10} }{2 + 3 + 2 \sqrt{6} - 5 }  \\  \\  \frac{(2 +  \sqrt{6}   -  \sqrt{10} )}{2 \sqrt{6} }  \\  \\ \frac{(2 +  \sqrt{6}   -  \sqrt{10} ) \sqrt{6} }{2 \sqrt{6} \times  \sqrt{6}  }  \\  \\  \frac{2 \sqrt{6} + 6 -  \sqrt{5.2.3.2}  }{2.6}  \\  \\  \frac{2 \sqrt{6} - 2 \sqrt{15}  + 6 }{12}  \\  \\  \frac{2( \sqrt{6} -  \sqrt{15}   + 3)}{12}  \\  \\  \frac{ \sqrt{6} -  \sqrt{15}   + 3}{12}

Similar questions