2^2x-1=4×2^2x+1 solve for x
Answers
Answer:
Given:
\mathsf{2^{2x+1}=4^{2x-1}}2
2x+1
=4
2x−1
\textbf{To find:}To find:
\textsf{Solution of the given equation}Solution of the given equation
\textbf{Solution:}Solution:
\mathsf{Consider,}Consider,
\mathsf{2^{2x+1}=4^{2x-1}}2
2x+1
=4
2x−1
\mathsf{2^{2x+1}=(2^2)^{2x-1}}2
2x+1
=(2
2
)
2x−1
\mathsf{2^{2x+1}=2^{2(2x-1)}}2
2x+1
=2
2(2x−1)
\mathsf{2^{2x+1}=2^{4x-2}}2
2x+1
=2
4x−2
\textsf{Equating powers on bothsides, we get}Equating powers on bothsides, we get
\mathsf{2x+1=4x-2}2x+1=4x−2
\mathsf{2x-4x=-2-1}2x−4x=−2−1
\mathsf{-2x=-3}−2x=−3
\mathsf{2x=3}2x=3
\implies\boxed{\mathsf{x=\dfrac{3}{2}}}⟹
x=
2
3
\textbf{Find more:}Find more:
If 5^x-1 + 5^x+1=650 then find x
https://brainly.in/question/11573395
Find the value of x so that (3/4)^9×(3/4)^-7=(3/4)^4x
Answer:
this is your answer I hope helpful