Math, asked by ShaswatTheHelper, 2 months ago

(-2/3)^-3 should be divided by what that the quotient may be (4/27)^-2.​

Answers

Answered by AbhinavRocks10
42

✴️✴️

CORRECT QUESTION:-

By what number should

\sf( \frac{ - 2}{3} {)}^{ - 3}

be divided so that the quotient may be

\sf( \frac{4}{27} {)}^{ - 2}

✴️✴️

ANSWER ♡

Let no. be x

\sf\frac{ ( \frac{ - 2}{3} {)}^{ - 3} }{x} =\sf ( \frac{4}{27} {)}^{ 2}

\sf= > \frac{ (\frac{ - 3}{2} {)}^{3} }{x} = ( \frac{27}{4} {)}

\sf= > x = \frac{( \frac{ - 3}{2} {)}^{3} }{( \frac{27}{4} {)}^{2} }

\sf\boxed{= > x = \frac{ - 2}{27} }

✴️✴️

Answered by MizzCornetto
556

{\bf{\pmb{\color{navy}{Question:-}}}}

By what number should \bf( \frac{ - 2}{3} {)}^{ - 3} be divided so that the quotient may be \sf( \frac{4}{27} {)}^{ - 2}

{\bf{\pmb{\color{navy}{Explanation:-}}}}

Let no. be x

\bf\frac{ ( \frac{ - 2}{3} {)}^{ - 3} }{x} =\bf ( \frac{4}{27} {)}^{ 2}

\bf \longrightarrow \frac{ (\frac{ - 3}{2} {)}^{3} }{x} = ( \frac{27}{4} {)}

\bf= > x = \frac{( \frac{ - 3}{2} {)}^{3} }{( \frac{27}{4} {)}^{2} }

\bf\boxed{= > x = \bf\frac{ - 2}{27} }

_____________________________♡

Similar questions