Math, asked by kumar1159, 8 months ago

2□-4/□=10. 2□+2/□=4​

Attachments:

Answers

Answered by itz123456
1
  1. 2(3)-4/(-1) = 10
  2. 2(3)+2/(-1)= 4
  3. (3)-(-1)= 4

Hope this is helpful to you.

Please mark my answer as brainliest.

Have a nice day.

Attachments:
Answered by Anonymous
13

 \purple{\large{\underline{\underline{ \rm{Given: }}}}}

 \sf2 \: □ -  \dfrac{4}{□}  = 10

 \sf2 \: □ - \dfrac{2}{□}  = 4

 \sf □ -  \: □ = ?

 \purple{\large{\underline{\underline{ \rm{To \: Find: }}}}}

Values which can replace faces.

 \purple{\large{\underline{\underline{ \rm{Solution: }}}}}

Let,

◈ The girl's face = x

◈ The boy's face = y

Then we have:

 \sf2x -  \dfrac{4}{y}  = 10 .......①

 \sf2x +  \dfrac{2}{y}  = 4 .......②

Subtract eq from eq, we have:

 \sf2x +  \dfrac{2}{y}  - (2x -  \dfrac{4}{y}  )= 4 - 10

 \sf{ \implies{ \dfrac{2xy + 2}{y}  - ( \dfrac{2xy - 4}{y} ) =  - 6}}

 \sf{ \implies{\dfrac{(2xy + 2) - (2xy - 4)}{y}  =  - 6}}

 \sf{ \implies{ \dfrac{2xy + 2 - 2xy + 4}{y}  =  - 6}}

 \sf{ \implies{ \dfrac{2 + 4}{y}  =  - 6}}

 \sf{ \implies{ \dfrac{6}{y}  =  - 6}}

 \sf{ \implies{6 =  - 6y}}

 \sf{ \implies{ -  \dfrac{6}{6}  = y}}

 \sf{ \implies{y =  - 1}}

Boy's face i.e.,

 \sf{  \blue{ \underline{ \boxed{ \sf{y =  - 1}}}}}

Put the value of y in eq① to get the value of x

 \sf{2x -  \dfrac{4}{y}  = 10}

 \sf{ \implies{2x - ( -  \dfrac{4}{1} ) = 10}}

 \sf{ \implies{2x + 4 = 10}}

 \sf{ \implies{2x = 10 - 4}}

 \sf{ \implies{2x = 6}}

 \sf{ \implies{x =  \dfrac{6}{2}}}

 \sf{ \implies{x = 3}}

Girl's face i.e.,

 \sf{ \blue{ \underline{ \boxed{ \sf{x = 3}}}}}

Now,

 \sf{x - y =   \: ? }

Substitute the values of x and y, we have:

 \sf{3 - ( - 1)}

 \sf = {3 + 1}

 \sf = 4

 \sf{ \therefore{ \blue{ \underline{ \boxed{ \sf{3 -  ( - 1) = 4}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf{ \purple{Let's \: Verify \: it :-}}

Case 1 :-

 \sf2(3) - ( -  \dfrac{4}{1} )

 \sf = 6 + 4

 \sf = 10

Case 2 :-

 \sf2(3) + ( -  \dfrac{2}{1} )

 \sf = 6 - 2

 \sf = 4

Case 3 :-

 \sf3 - ( - 1)

 \sf = 3 + 1

 \sf = 4

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions