Math, asked by ruchi396, 1 year ago

(-2,4),(4,8),(10,7),(11,-5)are the vertices of a quadrilateral.
show that the quadrilateral obtained on joining the midpoint of its sides is a parallelogram

Answers

Answered by dragomegaman
39
Here is the required answer
Attachments:
Answered by amirgraveiens
10

Proved below.

Step-by-step explanation:

Given:

Let A = (−2,4), B = (4,8), C = (10,7) and D = (11,−5) are the vertices of a quadrilateral.

So using midpoint formula (\frac{x_1+x_2}{2} ,\frac{y_1+y_2}{2})

Let midpoint of AB be E,

E=(\frac{4-2}{2},\frac{8+4}{2})

E=(1,6)

Let midpoint of BC be F,

F=(\frac{10+4}{2},\frac{7+8}{2})

F=(7,\frac{15}{2} )

Let midpoint of CD be G,

G=(\frac{10+11}{2}, \frac{7-5}{2})

G=(\frac{21}{2},1)

Let midpoint of AD be H,

H=\frac{11-2}{2},\frac{-5+4}{2}

G=(\frac{9}{2},\frac{-1}{2} )

Now  for proving parallelogram showing opposite side are at same slope will be sufficient

So,

slope of EF=\frac{y_2-y_1}{x_2-x_1}

                  =\frac{\frac{15}{2}-6 }{7-1}

                  =\frac{\frac{15-12}{2}}{6}

                  =\frac{15-12}{2\times6}

                  =\frac{3}{12}

Slope of EF=\frac{1}{4}

Slope of GH=\frac{\frac{-1}{2}-1 }{\frac{9}{2}-\frac{21}{2}  }

                   =\frac{\frac{-1-2}{2} }{\frac{9-21}{2} }

                   =\frac{-3}{-12}

Slope of GH= \frac{1}{4}            

So slope of these opposite side are equal.

Similarly, shows that slope of other two opposite side are equal and hence they are parallelogram.

Hence proved.    

Attachments:
Similar questions