2+4+6+.....+2n=n ka square +n solve by pmi statement
Answers
Answered by
2
Answer:
let p(n) =2+4+6+........+2n =n^2+n
p(n)=2(1+2+3+..............+n) =n^2+n
put n=1
p(1)=2(1+2+3+.......+1)=1^2 +1
2=2
p(1)=2
p(1)is true
Assume that the statement p(k) is true
(ie) p(k)=2(1+2+3+..........+k) =k^2+k
We need to show that p(k+1)is true
p(k+1)=2(1+2+3+.............+k+k+1)
=k^2+k+2(k+1)
=k(k+1)+2(k+1)
=(k+1)(k+2)
=(k+1)(k+1+1)
=(k+1)^2 + (k+1)
p(k+1)=(k+1)^2 +(k+1)
p(k+1) is true
therefore by the principle of mathematical induction p(n):=2+4+6+..........+2n=n^2+n
Similar questions