Math, asked by tanisha127, 3 months ago

2-⁴x15-³x635/5²x10-⁴

simplify and write in exponential form. ​

Attachments:

Answers

Answered by MrImpeccable
3

QUESTION:

\sf\dfrac{2^{-4}\times15^{-3}\times625}{5^2\times10^{-4}}

ANSWER:

To Simplify:

\sf\dfrac{2^{-4}\times15^{-3}\times625}{5^2\times10^{-4}}

Solution:

We are given that,

:\implies\sf\dfrac{2^{-4}\times15^{-3}\times625}{5^2\times10^{-4}}

So,

:\implies\sf\dfrac{2^{-4}\times(3\times5)^{-3}\times(5\times5\times5\times5)}{5^2\times(2\times5)^{-4}}

So,

:\implies\sf\dfrac{2^{-4}\!\!\!\!\!\!\!\!\!\bigg/\:\times3^{-3}\times5^{-3}\times5^4}{5^2\times2^{-4}\!\!\!\!\!\!\!\!\!\bigg/\:\times5^{-4}}

We know that,

:\implies\sf a^x\times a^y=a^{x+y}

So,

:\implies\sf\dfrac{3^{-3}\times5^{-3+4}}{5^{2-4}}

Hence,

:\implies\sf\dfrac{3^{-3}\times5^{1}}{5^{-2}}

We know that,

:\implies\sf\dfrac{a^x}{a^y}=a^{x-y}

So,

:\implies\sf3^{-3}\times5^{1-(-2)}

:\implies\sf3^{-3}\times5^{1+2}

Hence,

:\implies\sf3^{-3}\times5^3

Therefore,

:\implies\bf\dfrac{5^3}{3^3}

Or

:\implies\bf\left(\dfrac{5}{3}\right)^3

Formulae Used:

\:\:\:\:\bullet\:\:\:\:\sf a^x\times a^y=a^{x+y}

\:\:\:\:\bullet\:\:\:\:\sf\dfrac{a^x}{a^y}=a^{x-y}

Learn More:

 \begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Laws of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions