Math, asked by calibosojohnemanuel, 7 months ago

ײ + 9× + 20 = 0


discriminant nature of the roots

Answers

Answered by yasmin54
2

Answer:

  • x^2+9x+20=0
  • x^2+4x+5x+20=0
  • (x^2+4x)+(5x+20)=0
  • x(x+4)+5(x+4)=0
  • (x+4)(x+5)=0

please follow me

please mark me brainlist

Answered by Anonymous
8

Answer:

\huge\star\underbrace{\mathtt\red{⫷❥ᴀ᭄} \mathtt\green{n~ }\mathtt\blue{ §} \mathtt\purple{₩}\mathtt\orange{Σ} \mathtt\pink{R⫸}}\star\:

Step-by-step explanation:

\huge{\underline{\underline{Given→}}}

Equation=x^2+9x+20=0

\huge{\underline{\underline{To\:Find→}}}

Discriminant(D) of the given equation.

\boxed{<strong><em>→</em></strong><strong><em>D=</em></strong><strong><em>b</em></strong><strong><em>^</em></strong><strong><em>2-4</em></strong><strong><em>a</em></strong><strong><em>c</em></strong>}

\huge{\underline{\underline{Answer→}}}

x^2+9x+20

D=b^2-4ac

D=(9)^2-4(1)(20)

D=81-(4)20

D=81-80

D=1

{\boxed{\boxed{→D=1✔}}}

So the Discriminant(D) of the given equation is 1 which a +ve value, so the equation has two distinct and real roots.

HOPE IT HELPS.

Similar questions