Math, asked by gb5752378, 1 month ago

2. A cone, hemisphere and a cylinder stand on the sarne base and have equal height. Find the ratio of their:

(a) Curved surface areas.​

Answers

Answered by ItzMeMukku
1

\boxed{\bf{Volume\:of\:cone\:=(1/3)πr2h}}

\boxed{\bf{Volume\: of \:hemisphere\: =\: (2/3)πr3}}

\boxed{\bf{Volume \:of\: cylinder \:= \:πr2h }}

Given that cone, hemisphere and cylinder have equal base and same height

That is r = h Volume of cone :

Volume of hemisphere : Volume of cylinder

\sf = (1/3)πr2h :  (2/3)πr3 : πr2h = (1/3)πr3 :  (2/3)πr3 : πr3 = (1/3) : (2/3) : 1

\mapsto\bf{1: 2: 3}

\textbf{More to know :-}

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}

Similar questions