Math, asked by sawan6171, 10 months ago

2 A quadratic polynomial whose sum of zeroes is 5 and product is 6 will be a) x 2 +5x+6 b) x 2 -5x+6 c) x 2 +5x-6 d) x 2 -5x-6

Answers

Answered by Nachiketman
0

Answer: b) x^2 - 5x + 6

Step-by-step explanation:

If p and q are roots of a quadratic equation ax^2 + bx + c=0

       Sum of roots = (p + q) = - [(Coefficient of x) / (Coefficient of x^2)]

      Product of roots = pq =[ (constant or c) / (Coefficient of x^2)]

      The Quadratic equation can be written as

                         a( x - p)(x - q)=0

                       a(x^2 -px - qx + pq)=0

                       a(x^2 -(p+q)x + pq )=0   ---------3

So we can write

            p + q=-b/a ------1     and        pq=c/a  --------2      

We have been given value of sum of zeroes or roots as 5 = p+q

Product of zeroes is 6 = pq

Substituting values of p+q and pq in 1 and 2 we get

          p+q=5 = -b/a  

          pq=6 = c/a

So   b =  - 5a        and       c = 6a    

a=1  as coefficient of x^2 is 1 in all options

Substituting these values in 3 we get

           1(x^2 - (5)x + 6)=0

           x^2 - 5x + 6=0

Therefore the answer is b) x^2 - 5x + 6

               

Similar questions