Math, asked by swethashashi22, 19 days ago

2. Abhimanyu invested 100000 13% p.a compounded annually. Find the following . i.The amount standing to his credit the end of the second year . ii.The interest for the third year​

Answers

Answered by Anonymous
24

 \large \; {\underline{\underline{\maltese \; {\pmb{\red{\sf{ Given \; :- }}}}}}}

  • Sum Invested = 100000
  • Rate of Interest = 13 %
  • Compounded = Annually

 \\ {\underline{\rule{200pt}{3pt}}}

 \large \; {\underline{\underline{\maltese \; {\pmb{\blue{\sf{ To \: Find \; :- }}}}}}}

  • Amount at the end of 2nd year = ?
  • Interest for the 3rd year = ?

 \\ {\underline{\rule{200pt}{3pt}}}

 \large \; {\underline{\underline{\maltese \; {\pmb{\orange{\sf{ Solution \; :- }}}}}}}

 {\color{orange}{❒}} Formula Used :

  • Amount :

 \large{\pink{\dashrightarrow}} \; {\underline{\boxed{\color{darkblue}{\sf{ A = P \bigg\lgroup 1 + \dfrac{R}{100} \bigg\rgroup ^n }}}}}

  • Compound Interest :

 \large{\pink{\dashrightarrow}} \; {\underline{\boxed{\color{darkblue}{\sf{ C.I = Amount - Principal  }}}}}

Where :

  • A = Amount
  • R = Rate
  • P = Principal
  • n = Time
  • C.I = Compound Interest

 \\ \qquad{\rule{150pt}{1pt}}

 {\color{orange}{❒}} Calculating the Amount at the end of 2nd year :

 {\longmapsto{\qquad{\sf{ A = P \bigg\lgroup 1 + \dfrac{R}{100} \bigg\rgroup ^n }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \bigg\lgroup 1 + \dfrac{13}{100} \bigg\rgroup ^2 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \bigg\lgroup 1 + \cancel\dfrac{13}{100} \bigg\rgroup ^2 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \bigg\lgroup 1 + 0.13 \bigg\rgroup ^2 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \bigg\lgroup  1.13 \bigg\rgroup ^2 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 10000 \times 1.13 \times 1.13 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \times 1.2769 }}}} \\ \\ \ {\qquad{\textsf{ Amount at the end of 2nd year = {\green{\sf{ ₹ \; 127690 }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 {\color{orange}{❒}} Calculating the Interest for the 3rd year :

 {\longmapsto{\qquad{\sf{ A = P \bigg\lgroup 1 + \dfrac{R}{100} \bigg\rgroup ^n }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \bigg\lgroup 1 + \dfrac{13}{100} \bigg\rgroup ^3 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \bigg\lgroup 1 + \cancel\dfrac{13}{100} \bigg\rgroup ^3 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \bigg\lgroup 1 + 0.13 \bigg\rgroup ^3 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \bigg\lgroup  1.13 \bigg\rgroup ^3 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 10000 \times 1.13 \times 1.13 \times 1.13}}}} \\ \\ \ {\longmapsto{\qquad{\sf{ A = 100000 \times 1.442897 }}}} \\ \\ \ {\qquad{\textsf{ Amount at the end of 2nd year = {\red{\sf{ ₹ \; 144289.7 }}}}}}

 \\

~ Calculating the Compund Interest :

 {\dashrightarrow{\qquad{\sf{ C.I = Amount - Principal }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 144289.7 - 100000 }}}} \\ \\ \ {\qquad{\textsf{ Compound Interest for the 3rd year = {\color{maroon}{\sf{ ₹ \; 44289.7 }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

❝ Amount at the end of 2nd year is ₹ 127690 and the Compound interst for 3rd year is ₹ 144289.7 . ❞

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by BrainlyResearcher
24

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

{\huge{\color{red}{\rm{Question}}}}

Abhimanyu invested 100000 13% p.a compounded annually. Find the following . i.The amount standing to his credit the end of the second year . ii.The interest for the third year.

{\large{\underline{\underline{\rm{Answer}}}}}

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

{\large{\underline{\underline{\color{blue}{\rm{Given}}}}}}

  • Sum Invested=100,000
  • Rate of Interest=13 percent
  • Compounded Annually

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

{\large{\underline{\underline{\color{orange}{\rm{To\:Find}}}}}}

  • Amount=?
  • Interest?

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

{\large{\underline{\underline{\rm{Formula\:Used}}}}}

{\large{\underline{\underline{\rm{Amount}}}}}

{\large{\underline{\boxed{\color{red}{\sf{A=P(1+\frac{R}{100})^n}}}}}}

{\large{\underline{\underline{\rm{C.I}}}}}

{\large{\underline{\boxed{\color{red}{\sf{C.I.=A-P}}}}}}

{\large{\underline{\underline{\rm{Here}}}}}

  • A=Amount
  • P=Principal
  • R=Rate
  • n=time

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\qquad{\qquad{\qquad{\large{\underline{\underline{\rm{Solution}}}}}}}}

{\qquad{\qquad{\qquad{\large{\sf{Amount\:at\:the\:end\:of\:2nd\:year:}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=P[1+\frac{R}{100}]^n}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=1000001+\frac{13}{100}^2}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=1000001+\frac{13}{100}^2}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=1000001+0.13^2}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=1000001.13^2}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=100000\times 1.13\times 1.13}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=100000\times 1.13\times 1.13}}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=100000\times 1.2679}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=1267900}}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\qquad{\qquad{\qquad{\large{\sf{Amount\:at\:the\:end\:of\:3rd\:year:}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=P(1+\frac{R}{100})^n}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=P(1+\frac{R}{100})^n}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=100000(1+\frac{13}{100})^3}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=100000(1+\frac{13}{100})^3}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=100000(1+0.13)^3}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=100000(1.13)^3}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=100000(1.13\times1 .13 \times 1.13)}}}}}}}

{\qquad{\qquad{\qquad{\large{\longmapsto{\sf{A=100000\times 1.442897}}}}}}}

  • C.I

A-P

{\sf{1.442897-100000}}

{\large{\sf{C.I=144289.7}}}

\begin{gathered} \\ {\underline{\rule{200pt}{9pt}}} \end{gathered}

Similar questions