Physics, asked by jeyasrirajan54, 11 months ago

2. At an orbital height of 400 km, find the
orbital period of the satellite.​

Answers

Answered by sri288
1

Explanation:

PHYSICS

A satellite orbits the earth at a height of 400 km above the surface. How much energy must be expended to rocket the satellite out of the earth's gravitational influence? Mass of the satellite =200 kg; mass of the earth =6.0×10

24

kg; radius of the earth =6.4×10

6

m; G = 6.67×10

−11

Nm

2

kg

−2

.

November 22, 2019avatar

Mudra Spoorthi

SHARE

VIDEO EXPLANATION

ANSWER

Mass of the Earth, M=6.0×10

24

kg

m=200 kg

R

e

=6.4×10

6

m

G=6.67×10

−11

Nm

2

kg

−2

Height of the satellite,h=400 km=4×10

5

m

Total energy of the satellite at height h=(1/2)mv

2

+(−G

(R

e

+h)

M

e

m

)

Orbital velocity of the satellite, v=

R

e

+h

GM

e

Total energy at height h =

2

1

R

e

+h

GM

e

m

R

e

+h

GM

e

m

Total Energy=−

2

1

R

e

+h

GM

e

m

The negative sign indicates that the satellite is bound to the Earth.

Energy required to send the satellite out of its orbit = – (Bound energy)

=

2(R

e

+h)

GM

e

m

=

2(6.4×10

6

+4×10

5

)

6.67×10

−11

×6×10

24

×200

=5.9×10

9

J

If the satellite just escapes from the gravitational field, then total energy of the satellite is zero. Therefore, we have to supply 5.9×10

9

J of energy to just escape it.

pls mark as brainliest

Answered by sidhartharjun641
0

Answer:

93 minutes

Explanation:

      height of satellite (h) = 400 km

                                         = 400000 m

   Radius of the earth (R) = 6370 km

                                         = 6370000 m.

Gravitational constant (a) = 6.673 x 10⁻¹¹ Nm² kg⁻²

     Mass of the earth (M) = 5.972 x 10²⁴ kg

                                      v = √Gm/(R + h)

                                      v = √6.673 x 10⁻¹¹ x 5.972 x 10²⁴/6370000 + 400000

                                      v = √39.83 x 10¹³/6770 x 10³

                                         = √5.8 x 10⁷

                                         = 10³ √58

                                         = 7620 m/s.

                                      T = 2π (R + h)/V

                                         = 2 x 22/7 x 6370000 + 400000/7620

                                         = 44/7 x 6770000/7620

                                         = 297880000/53340

                                         = 55845 (60 seconds = 1 minutes)

                                         = 93 minutes

Similar questions