Math, asked by avanjeetsingh6, 2 months ago


2. Comment on the nature of the roots of the equation : 4x2 + 5x + 2 = 0​

Answers

Answered by Anonymous
5

Answer :

  • d < 0 then it has no real roots

Given :

  • 4x² + 5x + 2 = 0

To find :

  • Nature of the roots of the equation

Solution :

》4x² + 5x + 2 = 0

As we know that

  • D = b² - 4ac

Where ,

  • a is 4
  • b is 5
  • c is 2

》D = b² - 4ac

》D = (5)² - 4(4)(2)

》D = 25 - 32

》D = - 7

Verification :

  • D = b² - 4ac

where , a is 4 , b is 5 , c is 2 and d is 7

》 D = b² - 4ac

》-7 = (5)² - 4(4)(2)

》-7 = 25 - 32

》-7 = -7

Hence verified

Hence, d < 0 then it has no real roots and unique

Answered by Anonymous
3

Given :

  • \sf{4x}^{2}\:{+\:5x\:+\:2\:=\:0}

Find :

  • Nature of the roots of the equation.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{ }

We Know that :

  • \sf{\red{D\:=\:b}^{\red 2}\:{\red -\:\red 4 \red a \red c}}

{ }

Where,

  • a = 4
  • b = 5
  • c = 2

{ }

Now, putting the value in formula,

  • \sf{\pink{D\:=\:b}^{\pink 2}\:{\pink -\:\pink 4 \pink a \pink c}}

{ }

\:\:\:\:\:\:{\dashrightarrow\:\sf{D\:=\:5}^{2}\:{-\:4\:(4)\:(2)}}

{ }

\:\:\:\:\:\:{\dashrightarrow\:\sf{D\:=\:25\:-\:32}}

{ }

\:\:\:\:\:\:{\dashrightarrow\:\sf{D\:=\:-7}}

{ }

\:\therefore\:{\underline{\sf{Hence,\:d\:&lt;\:0\:then\:it\:has\:{\textsf{\textbf{no\:real\:roots\:and\:unique. }}}}}}.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{ }

\:\:{\underline{\bold{\purple{\sf{V\:E\:R\:I\:F\:I\:C\:A\:T\:I\:O\:N\::}}}}}

{ }

  • \sf{\pink{D\:=\:b}^{\pink 2}\:{\pink -\:\pink 4 \pink a \pink c}}

{ }

★ So, know we know the value of D is -7.

{ }

\:\:\:\:\:\:\leadsto\:{\sf{-7\:=\:(5)}^{2}\:{-\:4\:(4)\:(2)}}

{ }

\:\:\:\:\:\:\leadsto\:{\sf{-7\:=\:25\:-\:32}}

{ }

\:\:\:\:\:\:\leadsto\:{\sf{-7\:=\:-7}}

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{\underline{\textsf{\textbf{Hence\:Verified!!}}}}

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{ }

Similar questions