Math, asked by Mathmesh951, 4 months ago

2 cos67°/sin23°-tan40°/cot50°-sin90°

Answers

Answered by Anonymous
20

\large \boxed{{\boxed{ \underline{ \underline \blue{ \sf{ǫᴜᴇsᴛɪᴏɴ : }}}}}}

 \pink{ \sf{ \frac{2 \: cos \: 67 \degree}{sin \: 23 \degree} -  \frac{tan \: 40 \degree}{cot \: 50  \degree}  - sin \: 90 \degree }} \\

\large \boxed{{\boxed{ \underline{ \underline \blue{ \sf{ᴀɴsᴡᴇʀ : }}}}}}

 \blue{ \sf{ \frac{2cos \: 67 \degree}{cos(90 \degree - 23 \degree)} -  \frac{tan40 \degree}{tan(90 \degree - 50 \degree)} - sin90 \degree  }} \\  \\   \blue{ \sf{ =\frac{2cos \: 67 \degree}{cos \: 67 \degree } -  \frac{tan40 \degree}{tan \: 40\degree} - sin90 \degree  }} \\  \\ \blue{ \sf{ =\frac{2 \cancel{cos \: 67 \degree}}{ \cancel{cos \: 67 \degree }} -  \frac{ \cancel{tan40 \degree}}{ \cancel{tan \: 40\degree}} - sin90 \degree  }} \\  \\  \blue{ \sf{ = 2 - 1 - 1}} \\  \\  \blue{ \sf{ = 2 - 2}}  \\  \\  \blue{ \sf{ = 0}}

Answered by genius1947
2

\large \boxed{{\boxed{ \underline{ \underline { \sf{Question:-}}}}}}

 { \bf{ \frac{2 \: cos \: 67 \degree}{sin \: 23 \degree} -  \frac{tan \: 40 \degree}{cot \: 50  \degree}  - sin \: 90 \degree }} \\

\large \boxed{{\boxed{ \underline { \sf{Answer:-}}}}}

 { \bf{ \frac{2cos \: 67 \degree}{cos(90 \degree - 23 \degree)} -  \frac{tan40 \degree}{tan(90 \degree - 50 \degree)} - sin90 \degree  }} \\  \\   { \bf{ =\frac{2cos \: 67 \degree}{cos \: 67 \degree } -  \frac{tan40 \degree}{tan \: 40\degree} - sin90 \degree  }} \\  \\ { \bf{ =\frac{2 \cancel{cos \: 67 \degree}}{ \cancel{cos \: 67 \degree }} -  \frac{ \cancel{tan40 \degree}}{ \cancel{tan \: 40\degree}} - sin90 \degree  }} \\  \\  { \bf{ = 2 - 1 - 1}} \\  \\  { \bf{ = 2 - 2}}  \\  \\  { \bf{ = 0}}

Similar questions