Math, asked by jupitararajbangshi, 7 months ago

2+cot^2theta- cosec^2theta /cosec^2 theta -1 =tan^2 theta​

Answers

Answered by Anonymous
145

QUESTION:-

Prove that :-

 \sf  \dfrac{2 + {cot}^{2}  \theta- {cosec}^{2} \theta  }{{cosec}^{2}  \theta - 1}  ={tan}^{2} \theta

SOLUTION:-

⠀⠀⠀

We have LHS:

⠀⠀⠀

  \implies\sf  \dfrac{2 + {cot}^{2}  \theta- {cosec}^{2} \theta  }{{cosec}^{2}  \theta - 1}

⠀⠀

 \sf \bigstar Using \:trignometric\:identity \longrightarrow \boxed{\sf 1 +{cot}^{2} \theta = {cosec}^{2} \theta }

⠀⠀⠀

 \implies \sf  \dfrac{2 + {cot}^{2}  \theta- (1 +{ cot}^{2} \theta  )}{1 + {cot}^{2}  \theta - 1}

 \implies \sf  \dfrac{2 + {cot}^{2}  \theta- (1 -{ cot}^{2} \theta) }{(1 -1)+{cot}^{2}  \theta }

 \implies \sf  \dfrac{2 + {\cancel{cot}}^{2}  \theta - 1- {\cancel {cot}}^{2} \theta  }{{cot}^{2}  \theta }

 \sf \implies \dfrac{2-1}{{cot}^{2}  \theta} \:  \:  \:  \:  |in \: num.{cot}^{2} \: get \: cancelled |

 \sf \implies \dfrac{1}{{cot}^{2}  \theta}

⠀⠀⠀

 \sf \bigstar Using \: trignometric \:identity \longrightarrow  \boxed{ \sf \dfrac{1}{{cot}\theta  } = {tan} \theta }

⠀⠀⠀

We get LHS

⠀⠀⠀

 =  \sf tan^{2}  \theta

⠀⠀⠀

Therefore,LHS =RHS

Hence proved

Similar questions