Math, asked by shaikhnagma902121, 4 months ago

2. Determine Whether the points are collinear .R (0,3), D (2,1), S (3,-1) Maths part2 practice set 5.1 ​

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question :-  }}

  • Determine whether the points are collinear :- R (0,3), D (2,1), S (3,-1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given \: coordinates :  -  \begin{cases} &\sf{R (0,3)} \\ &\sf{D (2,1)}\\ &\sf{S (3,-1)} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf To  \: justify  :  - \begin{cases} &\sf{R, D, S \:  are  \: collinear  \: or  \: not.} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

There are 4 Methods to justify whether points are collinear or not :-

\begin{gathered}\begin{gathered}\bf Methods : -  \begin{cases} &\sf{1. \: area \: of \: triangle} \\ &\sf{2. \: distance \: formula} \\ &\sf{3. \: section \: formula}\\ &\sf{4. \: slope \: method}\end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Prefer here, area of triangle

If the area of triangle formed by three points is zero, then they are said to be collinear.

─━─━─━─━─━─━─━─━─━─━─━─━─

\text{\large\underline{\orange{Formula:-}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \ Area =\frac{1}{2}  [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]

\begin{gathered}\begin{gathered}\bf where :  -  \begin{cases} &\sf{(x_{1} , y_{1})  \: is \: first \: vertex \: of \: triangle)} \\ &\sf{(x_{2} , y_{2} ) \: is \: the \: second \: vertex \: of \: triangle}\\ &\sf{(x_{3} , y_{3}) \: is \: third \: vertex \: of \: triangle )} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf here : -   \begin{cases} &\sf{(x_{1} , y_{1})  \:  = (0,3)} \\ &\sf{(x_{2} , y_{2} ) \:  = (2,1)}\\ &\sf{(x_{3} , y_{3}) \: (3, - 1) )} \end{cases}\end{gathered}\end{gathered}

☆ Using formula,

\sf \ Area =\frac{1}{2}  [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]

\sf \: Area =  \frac{1}{2} [0(1 + 1) + 2( - 1 - 3) + 3(3 - 1)]

\sf \:  Area =  \frac{1}{2} [0 - 8 + 6]

\sf \:  ⟼Area =  \frac{1}{2} [ - 2] =  | - 1|  = 1 \: sq. \: units.

\sf \:  ⟼Area \:  is \: not \: equals \: to \: 0

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, points \: are \: not \: collinear.}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Answered by yashwanth102030
4

Step-by-step explanation:

Refer to this attachment

Attachments:
Similar questions