Math, asked by Deewana, 5 months ago

2. Express the product of sines and cosines


sin 2 theta + sin 4 theta ​

Answers

Answered by xyzmynameis
0

Answer:

We have,

sin12θ+sin4θ

⇒sin2(6θ)+sin2(2θ)

⇒2sin6θcos6θ+2sin2θcos2θ

⇒2sin2(3θ)cos6θ+4sinθcosθcos2θ

⇒4sin3θcos3θcos6θ+4sinθcosθcos2θ

Step-by-step explanation:

Plz follow me

Answered by ajajit9217
0

Answer:

sin 2\theta + sin 4\theta = 6 sin \theta cos³\theta - 2 sin³\theta cos \theta

Step-by-step explanation:

Given sin 2\theta + sin 4\theta

As sin 2\theta = 2 sin \theta cos \theta

=> 2 sin \theta cos \theta + 2 sin 2\theta cos 2\theta

= 2 sin \theta cos \theta + 2 * 2 sin \theta cos \theta cos 2\theta

Taking common

=> 2 sin \theta cos \theta [1 + 2 cos 2\theta]

As cos 2\theta = cos² \theta - sin² \theta

=> 2 sin \theta cos \theta [ 1 + 2(cos² \theta - sin² \theta) ]

As cos² \theta + sin² \theta = 1

=> 2 sin \theta cos \theta [ cos² \theta + sin² \theta  + 2cos² \theta - 2sin² \theta ]

= 2 sin \theta cos \theta [ 3cos² \theta - sin² \theta ]

= 6 sin \theta cos³\theta - 2 sin³\theta cos \theta

=> sin 2\theta + sin 4\theta = 6 sin \theta cos³\theta - 2 sin³\theta cos \theta

Similar questions