Math, asked by sumitsinghrajput1432, 3 months ago

2. Find the total surface area of a cone, if its slant height is 21 m and diameter of its base
is 24.m.

Answers

Answered by hima63718
7
Given
Slant height, l = 21 m
Radius, r = 12 m

Solution
TSA of cone = pi * r * (r + l)
= (22/7) * 12 * (12+21)
= (22/7) * 12 * 33
= (22/7) * 396
= 8712/7
= 1244.57 cm^2
Answered by suraj5070
419

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt 2.\:\: Find \:the\: total\: surface\: area\: of\: a\: cone\:, if\: its\: slant\\\tt height\: is\: 21 \:m\: and\: diameter \:of\: its\: base\: is\: 24\:m.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Slant\: height\: of\: the\: cone =21\:m
  •  \sf \bf Diameter\: of\: the\: cone =24\:m

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Total \:Surface \:Area \:of \:the \:cone(TSA)

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\bf {\pmb {Radius \:of \:the \:cone}}}}}

 {\blue {\boxed {\boxed {\boxed {\green {\pmb {r=\dfrac{d}{2}}}}}}}}

  •  \sf r=radius \:of \:the \:cone
  •  \sf d=diameter\:of \:the \:cone

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies r=\dfrac{24}{2}

 \implies {\blue {\boxed {\boxed{\purple {{\sf r=12}}}}}}

————————————————————————————

 {\pink {\underline {\bf {\pmb {Total\:Surface \:Area\:of \:the \:cone}}}}}

 {\blue {\boxed {\boxed {\boxed {\green{\pmb {TSA={\pi} r\big(r+l\big)}}}}}}}

  •  \sf TSA=Total \:surface \:area \:of \:the \:cone
  •  \sf r=radius \:of \:the \:cone
  •  \sf l=slant \:height \:of \:the \:cone

 {\underbrace {\overbrace {\orange {\pmb {Substitute \:the \:values}}}}}

 \bf \implies TSA=\dfrac{22}{7}\times 12\Big(12+21\Big)

 \bf \implies TSA=\dfrac{22}{7}\times 12\times 33

 \bf \implies TSA=\dfrac{22}{7}\times 396

 \bf \implies TSA=\dfrac{8712}{7}

 \implies {\blue {\boxed {\boxed {\purple {\mathfrak {TSA=1244.57\:{cm}^{2}}}}}}}

 {\underbrace {\red {\underline {\red {\overline {\red {\sf {\pmb{{\therefore} The\:Total \:Surface \:Area \:of \:the\:cone \:is\:1244.57\:{cm}^{2}}}}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf Curved \:surface \:area \:of \:cone = \pi r l

 \sf Total\:surface \:area \:of \:cone = \pi r(r+l)

 \sf Volume\:of \:cone = \dfrac{1}{3}\pi{r}^{2}h

Similar questions