Math, asked by tiwarisarita2000, 11 months ago

2. If a = 3+2, 2 then find the value of a3+1/a3​

Answers

Answered by viditrana2007
0

Step-by-step explanation:

Given:

a = 3 + 2\sqrt{2}

2

To find, the value of a^{3} +\dfrac{1}{a^{3}}a

3

+

a

3

1

= ?

Solution:

∴ \dfrac{1}{a}

a

1

= \dfrac{1}{3 + 2\sqrt{2}}

3+2

2

1

Rationalising by denominator, we get

\dfrac{1}{a}

a

1

= \dfrac{1}{3 + 2\sqrt{2}}\times \dfrac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}}

3+2

2

1

×

3−2

2

3−2

2

⇒ \dfrac{1}{a}

a

1

= \dfrac{3 - 2\sqrt{2}}{3^2 - (2\sqrt{2})^2}

3

2

−(2

2

)

2

3−2

2

⇒ \dfrac{1}{a}

a

1

= \dfrac{3 - 2\sqrt{2}}{9-8}

9−8

3−2

2

⇒ \dfrac{1}{a}

a

1

= 3 - 2\sqrt{2}

2

Using the algebraic identity:

(a+\dfrac{1}{a})^3=a^{3} +\dfrac{1}{a^{3}}+3(a) (\dfrac{1}{a})(a+\dfrac{1}{a})(a+

a

1

)

3

=a

3

+

a

3

1

+3(a)(

a

1

)(a+

a

1

)

∴ a^{3} +\dfrac{1}{a^{3}}=(a+\dfrac{1}{a})^3-3(a+\dfrac{1}{a})a

3

+

a

3

1

=(a+

a

1

)

3

−3(a+

a

1

)

Put a = 3 + 2\sqrt{2}

2

and \dfrac{1}{a}

a

1

= 3 - 2\sqrt{2}

2

, we get

a^{3} +\dfrac{1}{a^{3}}=(3 + 2\sqrt{2} +3 - 2\sqrt{2})^3-3(3 + 2\sqrt{2} +3 - 2\sqrt{2})a

3

+

a

3

1

=(3+2

2

+3−2

2

)

3

−3(3+2

2

+3−2

2

)

⇒ a^{3} +\dfrac{1}{a^{3}}=(6)^3-3(6)a

3

+

a

3

1

=(6)

3

−3(6)

⇒ a^{3} +\dfrac{1}{a^{3}}a

3

+

a

3

1

= 216 - 18

⇒ a^{3} +\dfrac{1}{a^{3}}a

3

+

a

3

1

= 198

∴ a^{3} +\dfrac{1}{a^{3}}a

3

+

a

3

1

= 198

Thus, if a = 3 + 2\sqrt{2}

2

, then a^{3} +\dfrac{1}{a^{3}}a

3

+

a

3

1

= 198.

Answered by Ub123
1

Answer:

226/15

Step-by-step explanation:

a =3+2

=5

Now,

a3+1/a3

= 5x3+1/5x3

= 15+1/15

= 225/15+1/15

= 226/15

Similar questions