Math, asked by trishnu777, 5 months ago

2
If x - 6x + 1 = 0 , then the value of
 {x}^{3}  +  \frac{1}{ {x}^{3} }
can be​

Answers

Answered by TheFairyTale
9

 \boxed{ \red{AnswEr:-}}

  • 198

Correct Question :-

  • If x² - 6x + 1 = 0, then what is the value of x³ + (1/x)³

GivEn :-

  •  \sf \:  {x}^{2}  - 6x + 1 = 0

To Find :-

  •  \sf \: value \: of \:  {x}^{3}  +  \dfrac{1}{ {x}^{3} }

 \boxed{ \red{ Solution :-}}

 \implies \sf \:  {x}^{2}  - 6x + 1 = 0

 \implies \sf \:  {x}^{2}  - 6x =  - 1

 \implies \sf \: x(x - 6) =  - 1

 \implies \sf \: x - 6 =   - \dfrac{ 1}{x}

 \implies     \boxed{\sf \: {\bold{ \red{ x +  \dfrac{1}{x}  = 6}}}}

Now, ➦

 \sf \implies  {x}^{3}  +  \dfrac{1}{ {x}^{3}}

 \implies \sf \: (x +  \dfrac{1}{x})^{ 3}   - 3x  \times \dfrac{1}{x} (x +  \dfrac{1}{x})

 \implies \sf \:  {6}^{3}  - 3 \times 6

 \implies \sf \: 216 - 18

 \implies \boxed{ \sf{ \red{ \bold{198}}}}

Answered by EthicalElite
7

Correct Question :

If x² - 6x + 1 = 0, then what is the value of  \sf x^{3} + \dfrac{1}{x^{3}}

Given :

 \sf {x}^{2} - 6x + 1 = 0

To Find :

\sf The \: value \: of \: {x}^{3} + \dfrac{1}{ {x}^{3} }

Solution :

As, we are given :

 \sf {x}^{2} - 6x + 1 = 0

 \sf : \implies {x}^{2} - 6x = - 1

 \sf : \implies x(x - 6) = - 1

 \sf : \implies x - 6 = - \dfrac{ 1}{x}

 \sf : \implies x + \dfrac{1}{x} = 6

 \underline{\boxed{\bf x + \dfrac{1}{x} = 6}}

By cubing both sides, we get :

 \sf : \implies \Bigg(x + \dfrac{1}{x} \Bigg)^{3} = (6)^{3}

By using identinty :

 \underline{\boxed{\bf{ (a+b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3ab^{2} }}}

 \sf : \implies x^{3} + \Bigg(\dfrac{1}{x}\Bigg)^{3} + 3 \times x^{2} \times \dfrac{1}{x} + 3 \times x \times (\dfrac{1}{x} )^{2} = 216

 \sf : \implies x^{3} + \dfrac{1}{x^{3}} + 3x + \dfrac{3}{x} = 216

 \sf : \implies x^{3} + \dfrac{1}{x^{3}} + 3 \Bigg(x + \dfrac{1}{x}\Bigg) = 216

Now, we have :

 \underline{\boxed{\bf x + \dfrac{1}{x} = 6}}

 \sf : \implies x^{3} + \dfrac{1}{x^{3}} + 3 \times 6 = 216

 \sf : \implies x^{3} + \dfrac{1}{x^{3}}  + 18 = 216

 \sf : \implies x^{3} + \dfrac{1}{x^{3}} + 18 = 216

 \sf : \implies x^{3} + \dfrac{1}{x^{3}} = 216 - 18

 \sf : \implies x^{3} + \dfrac{1}{x^{3}} = 198

 \Large \underline{\boxed{\bf{x^{3} + \dfrac{1}{x^{3}} = 198}}}

 \pink{ \sf \therefore \: value \: of \: x^{3} + \dfrac{1}{x^{3}} = 198}

Similar questions