Math, asked by mnjkumarka, 9 months ago

2. In an arithmetic sequence, first term is 5
and square of seventh term is 529. Find the
common difference of the sequence. Find
sum of first 7 terms.​

Answers

Answered by dreamgirl015
0

Answer:

d=3

7th term= -63

Hope this helps u

Answered by Ataraxia
3

GIVEN :-

  • First term , \sf a_1 = 5
  • Square of 7th term , \sf (a_7)^2 = 529

TO FIND :-

  • Common difference of the AP .
  • Sum of first 7 terms .

SOLUTION :-

  Square of seventh term = 529

        \sf a_7 = a+16d

   \hookrightarrow \sf (a_7)^2 = 529 \\\\\hookrightarrow (a+6d)^2 = 529 \\\\\hookrightarrow a^2+ 36d^2+12ad = 529 \\\\\hookrightarrow 5^2+36d^2+12\times5\times d=529\\\\\hookrightarrow 25+36d^2+60d = 529 \\\\\hookrightarrow  36d^2+60d = 529-25\\\\\hookrightarrow 36d^2+60d = 504 \\\\\hookrightarrow  12(3d^2+5d) = 504 \\\\\hookrightarrow 3d^2+5d = 42 \\\\\hookrightarrow 3d^2+5d-42 = 0\\\\\hookrightarrow 3d^2-9d+14d-42 = 0 \\\\\hookrightarrow 3d(d^2-3)+14(d-3)=0\\\\\hookrightarrow (3d+14)(d-3)=0\\\\

   \bf d= 3 \ , \ d = -\dfrac{14}{3}

  Sum of first n terms =  \sf \dfrac{n}{2}\times (2a+(n-1)d)

  • Sum of first 7 terms of  AP having common difference 3 .

           

          \hookrightarrow \dfrac{7}{2}\times (2 \times 5+ (7-1)\times 3)\\\\\hookrightarrow  \dfrac{7}{2}\times (10+18)\\\\\hookrightarrow \dfrac{7}{2}\times28 \\\\\hookrightarrow \bf 98

  • Sum of first 7 terms of  AP having common difference \bf- \dfrac{14}{3} .

 

        \hookrightarrow \sf \dfrac{7}{2}\times (2\times 5+(7-1)\times - \dfrac{14}{3})\\\\

       \hookrightarrow \sf \dfrac{7}{2}\times (10 -28)

       \hookrightarrow \sf \dfrac{7}{2} \times -18

       \hookrightarrow \bf -63

       

Similar questions