Math, asked by sputti817, 5 months ago

2. In Fig. 13.23, AB = CD and AB || CD.
Prove that AABO # ADCO:

Attachments:

Answers

Answered by SweetLily
25

GIVEN

  • AB= CD
  • AB ll CD

To prove

 \sf{ \triangle \: ABO ≅\:  \triangle \: DCO}

Solution

consider ∆ ABO and ∆ DCO

  • AB= CD [ given]

  • angle BOA= angle DOC [ vertically opposite angles ] since AB ll CD

  • angle OBA = OCD [ vertically opposite angles] since AB ll CD

Therefore by AAS criteria ∆ ABO ≅ DCO

--------------------------------------

Answered by ys3618553
6

Given : AB = CD

AB || CD

To prove: ∆ ABO ≅ ∆ DCO

AB = CD (given)

∠ABO = ∠DCO (V.O.A)

∠B = ∠C ( Alternate interior angle)

∆ ABO ≅ ∆ DCO ( by ASA congruence condition)

Similar questions
Math, 2 months ago