Math, asked by saleenagrnhpr, 5 months ago

2. In the figure ▲ PQR is a right triangle.

a) See the length of the PQ
b) See the length of the QR

Attachments:

Answers

Answered by Anonymous
12

\green{\underline{\texttt{Given:}}}

\sf{\overline{PR} = 30 \: cm}

\sf{\angle P = 30 \degree}

\green{\underline{\texttt{To\:find:}}}

\sf{\overline{PQ}, \overline{QR}}

\green{\underline{\texttt{Solution:}}}

\textsf{We know that:}

\sf{sin \: \theta = \frac{Opposite Side}{Hypotenuse}}\\

\sf{ sin 30 = \frac{\overline{RQ}}{\overline{PR}}}\\

\sf{ \frac{1}{2} = \frac{\overline{RQ}}{12}}\\

\sf{ \overline{RQ} = 6 \: cm} \\

\\

\textsf{We also know that:}

\sf{cos \: \theta = \frac{Adjacent Side}{Hypotenuse}}\\

\sf{ cos 30 = \frac{\overline{PQ}}{\overline{PR}}}\\

\sf{ \frac{\sqrt{3}}{2} = \frac{\overline{PQ}}{12}}\\

\sf{ \overline{PQ} = 6\sqrt{3} \: cm}

\textsf{Thus:}

\boxed{\sf{\blue{\overline{RQ} = 6\: cm, \overline{PQ} = 6\sqrt{3}\: cm}}}

Answered by Híɾo
302

 \huge\bf{Question}

In the figure ▲ PQR is a right triangle.

a) See the length of the PQ

b) See the length of the QR

 \huge\bf{Answer}

Given:-

  • PR = 12cm
  • ∠P = 30°

To Find:-

  • Side PQ and QR

We know that,

 \large \bf {sin\: \theta  =  \frac{Opposite\: Side}{Hypotenuse} }

 \large \bf {sin30°  =  \frac{RQ}{RP} }

 \large \bf \frac{1}{2} = \frac{RQ}{12}

 \large \bf \not{12} = \not {2}RQ

 \large \bf \green {==》RQ = 6 cm}

We also know that,

 \large \bf {sin\: \theta  =  \frac{Adjacent\: Side}{Hypotenuse} }

 \large \bf {cos30°  =  \frac{PQ}{RP} }

 \large \bf \frac {\sqrt{3}}{2} = \frac{PQ}{12}

 \large \bf \not{12} {\sqrt{3}} = \not{2}PQ

 \large \bf \green {==》PQ = 6{\sqrt{3}}cm}

Attachments:
Similar questions